
 D4.3: Integration Plan and Test Cases

i

Smart and Healthy Ageing through People Engaging in supporting Systems

D 4.3 – Integration Plan and Test Cases

Project Title
Smart and Healthy Ageing through People Engaging in
Supportive Systems

Acronym SHAPES

Grant Number 857159

Type of instrument Innovation Action

Topic DT-TDS-01-2019

Starting date 01/11/2019

Duration 48

Work package WP4 – SHAPES Technological Platform

Lead author Eleni ZAROGIANNI (ICOM) and Ilia PIETRI (ICOM)

Contributors

ICOM: Artur KRUKOWSKI

EDGE : Marco Manso (EDGE), Jose Pires, Barbara Guerra

GNO: Fotis Gonidis & Alexander Berler

FINT: George Bogdos & Anargyros Sideris

HMU: Yannis Nikoloudakis

TREE: Jorge Fontela

MedSyn: Christoph Kokelmann

OMN: Waihang Shek

SciFY: Paul Isaris

UCLM: Felix Jesus Villanueva-Molina

VICOM: Luis Unzueta, Manex Serras, Gorka Epelde, Jordi
Torres, Naiara Muro, Jon Kerexata, Garazi Artola, Gorka Epelde
& Eduardo Carrasco

Version 1.0

Due date 31/10/2022 (M24)

Submission date 31/10/2021 (M24)

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

ii

Dissemination Level PU Public dissemination

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 857159

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

iii

Revision History
Table 1 – Revision History

Rev. # Date Editor Comments

0.0 15/4/20 A. Krukowski (ICOM) Initial ToC content

0.1 7/8/21 E. Zarogianni & I. Pietri (ICOM) Deployment & testing

0.2 7/9/21 A. Krukowski (ICOM) Integrated ToC

0.3 20/9/21 E. Zarogianni (ICOM)
Section 3.2.1.1, 3.2.1.2 &
3.2.1.3

0.4 21/9/21 Y. Nikoloudakis (HMU) Section 3.2.6 & 3.2.8

0.5 28/9/21
J. Fontela (TREE)
L. Unzueta (VICOM)

Sections 3.2.5, 3.2.7 &
Annex 1 (1.2 & 1.3)

0.6 29/9/21 E. Zarogianni (ICOM)
Sections 1.3, 1.6, 2.1, 2.2,
2.3, 2.4, 2.6 & 2.7

0.7 4/10/21 F.J. Villanueva-Molina (UCLM) Annex 1 (1.4)

0.7 4/10/21 W. Shek (OMN) Annex 1 (1.1)

0.8 5/10/21
M. Manso, J. Pires & B. Guerra
(EDGE)

Section 3.2.7

0.9 6/10/21 A. Sideris & G. Bogdos (FINT) Sections 3.2.2 & 3.2.3

1.0 7/10/21 I. Pietri & E. Zarogianni (ICOM)
Chapter 1, 2 & 3.
Sections 1.2, 2.4, 2.6,
3.2.1.2 & 3.2.1.3

1.0. 7/10/21 Kokelmann C. (MedSyn) Annex 1 (1.5) & Annex 2.

1.1 8/10/21 F. Gonidis (GNO)
Sections 3.2.4, 3.2.4.1-
3.2.4.3

1.2 12/10/21
P. Isaris (SciFY)

I. Pietri & E.Zarogianni (ICOM)

Annex 2.

Sections 1.3, 3.1 & 3.2.1

1.3 13/10/21 I. Pietri & E.Zarogianni (ICOM) All sections, Annex 1 & 2

1.4 15/10/21

X.Garcia (EDGE)

J.Fontela (TREE)

A.Krukowski (ICOM)

Section 3.2.7.2

Section 3.2.5.2

All sections

1.5 27/10/21 E.Zarogianni, A.Krukowski
Amendments after peer
reviews

Keywords
Technological Platform, Design, Architecture, Implementation

Disclaimer

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

iv

This document contains information which is proprietary to the SHAPES consortium.
Neither this document nor the information contained herein shall be used, duplicated
or communicated by any means to any third party, in whole or parts, except with the
prior written consent of the SHAPES coordinator.

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

v

Table of Contents

1 Introduction and Methodologies .. 1

1.1 Partners Involved in Relevant Tasks in WP4 .. 1
1.2 Field of Application ... 2
1.3 Methodology for Test Case Deployment ... 2
1.4 Structure and Scope of the Document .. 3
1.5 Relation to other work in the project .. 3

2 Assembly and Integration Plan ... 5

2.1 Tool chain ... 5
2.2 Version control ... 5
2.3 Code repository .. 5
2.4 Continuous Integration Server .. 6
2.5 Component’s integration .. 6
2.6 Lab deployment .. 7

3 Integration testing of the software components .. 8

3.1 Testing methodology .. 8
3.2 Components ... 8
3.2.1 The symbIoTe orchestration middleware (ICOM) .. 8
3.2.1.1 Overview of deployment options .. 8
3.2.1.2 Interfaces (I/F) offered .. 9
3.2.1.3 Test cases and Validation .. 10
3.2.2 Gateway (FINT) ... 15
3.2.2.1 Overview of deployment options .. 15
3.2.2.2 Interfaces offered ... 15
3.2.2.3 Test cases and Validation .. 16
3.2.3 FINoT IoT platform (FINT) ... 16
3.2.3.1 Overview of deployment options .. 16
3.2.3.2 Interfaces offered ... 17
3.2.3.3 Test cases and Validation .. 18
3.2.3.3.1 Update JWT token test ... 19
3.2.3.3.2 List FiNoT objects test ... 20
3.2.3.3.3 Get FiNoT object test .. 21
3.2.3.3.4 Get FiNoT object historical data test ... 22
3.2.3.3.5 Create FiNoT object test ... 23
3.2.3.3.6 Update FiNoT object test .. 24
3.2.3.3.7 Delete FiNoT object test ... 25
3.2.4 FHIR Medical Interoperability (GNO) ... 26
3.2.4.1 Overview of deployment options .. 26
3.2.4.2 Interfaces offered ... 27
3.2.4.3 Test cases and Validation .. 27
3.2.5 Big Data Platform: Data Lakehouse & Analytics Engine (TREE)... 27
3.2.5.1 Overview of deployment options .. 28
3.2.5.2 Interfaces offered ... 29
3.2.5.3 Test cases and Validation .. 34
3.2.6 ASAPA Authentication and Authorisation (HMU) .. 49

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

vi

3.2.6.1 Overview of deployment options .. 50
3.2.6.2 Interfaces offered ... 50
3.2.6.3 Test cases and Validation .. 51
3.2.7 Front-end App (EDGE)... 53
3.2.7.1 Overview of deployment options .. 53
3.2.7.2 Interfaces offered ... 54
3.2.7.3 Test cases and Validation .. 55
3.2.8 Marketplace (HMU) .. 59
3.2.8.1 Overview of deployment options .. 60
3.2.8.2 Interfaces Offered .. 60
3.2.8.3 Test cases and Validation ... 60

4 Results and Conclusions .. 70

5 Ethical Requirements Check .. 71

6 References .. 73

Annex 1 Digital Solutions – Integration Efforts ... 74

1.1 NOT!FY Digital Solution (OMN) ... 74
1.1.1 Overview of deployment options .. 74
1.1.2 Interfaces offered ... 74
1.1.3 Test cases and Validation .. 76
1.2 FACECOG Tool to Support User Authentication and for People Identification at a Distance

(VICOM).. 77
1.2.1 Overview of deployment options .. 77
1.2.2 Interfaces offered ... 79
1.2.3 Test cases and Validation .. 84
1.3 Adilib Chatbot Building Platform (VICOM) ... 84
1.3.1 Overview of deployment options .. 84
1.3.2 Interfaces offered ... 85
1.3.3 Test cases and Validation .. 90
1.4 At-home Rehabilitation System (UCLM) .. 90
1.4.1 Overview of deployment options .. 91
1.4.2 Interfaces offered ... 91
1.4.3 Test cases and Validation .. 91
1.5 MedicalSyn Digital Solution (MedSyn) ... 97
1.5.1 Overview of deployment and customization options .. 97

Annex 2 Integration of Digital Solutions with ASAPA and Front-end App. 99

2.1 Conversion of needs to specifications for integration .. 99
2.2 Refactoring of a Digital Solution to accommodate ASAPA ... 99
2.3 Integrating Front-end App with a Digital Solution ... 99

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

vii

List of Tables

TABLE 1 – REVISION HISTORY ... III
TABLE 2 – ACRONYMS AND ABBREVIATIONS. .. XI

TABLE 3 – DELIVERABLE CONTRIBUTORS. ... 1

TABLE 4 – SYMBIOTE API INTERFACES. ... 9

TABLE 5 - INTERFACE SYMBIOTEAPI-1. THIS INTERFACE IS USED TO REGISTER AN EXISTING ASAPA USER TO

SYMBIOTE. ... 10

TABLE 6 - INTERFACE SYMBIOTEAPI-2. THIS INTERFACE IS USED TO REGISTER A NEW L1 RESOURCE TO

SYMBIOTE. ... 10

TABLE 7- INTERFACE SYMBIOTEAPI-3. THIS INTERFACE IS USED TO GET A LIST OF L1 RESOURCES. 11

TABLE 8 - INTERFACE SYMBIOTEAPI-4. THIS INTERFACE IS USED TO GET RESOURCE INFORMATION FROM AN L1

RESOURCE USING ITS NAME. .. 11

TABLE 9 - INTERFACE SYMBIOTEAPI-5. THIS INTERFACE IS USED TO GET RESOURCE INFORMATION FROM AN L1

RESOURCE USING ITS ID. ... 12

TABLE 10 - INTERFACE SYMBIOTEAPI-6. THIS INTERFACE IS USED TO ACCESS AN L1 RESOURCE USING ITS NAME.
 .. 13

TABLE 11 - INTERFACE SYMBIOTEAPI-7. THIS INTERFACE IS USED TO DELETE AN L1 RESOURCE. 13

TABLE 12 - INTERFACE SYMBIOTEAPI-8. THIS INTERFACE IS USED TO RETRIEVE A LIST OF L2 RESOURCES....... 14

TABLE 13 - INTERFACE SYMBIOTEAPI-9. THIS INTERFACE IS USED TO GET INFORMATION ABOUT AN L2

RESOURCE... 14

TABLE 14 - INTERFACE SYMBIOTEAPI-10. THIS INTERFACE IS USED TO ACCESS AN L2 RESOURCE. 15

TABLE 15 – SHAPES GW INTERFACES. .. 16

TABLE 16 - INTERFACE GWAPI. THIS INTERFACE IS USED TO CHECK THE GW STATUS. 16

TABLE 17- FINOT’S PLATFORM INTERFACES ... 17

TABLE 18 - INTERFACE FINOTAPI. THIS INTERFACE IS USED TO AUTHENTICATE AN EXISTING USER TO FINOT. . 18

TABLE 19 - INTERFACE FINOTAPI. THIS INTERFACE IS USED TO REFRESH THE JWT AUTHENTICATION TOKEN. .. 19

TABLE 20 - INTERFACE FINOTAPI. THIS INTERFACE IS USED TO LIST ALL OF SHAPES OBJECTS (I.E., IOT DATA)

HOSTED IN FINOT. ... 20

TABLE 21 - INTERFACE FINOTAPI. THIS INTERFACE IS USED TO GET A SPECIFIC SHAPES OBJECT (I.E., IOT DATA)

HOSTED IN FINOT. ... 21

TABLE 22 - INTERFACE FINOTAPI. THIS INTERFACE IS USED TO GET A SPECIFIC SHAPES OBJECT (I.E., IOT DATA)

HISTORICAL DATA HOSTED IN FINOT.. 22

TABLE 23 - INTERFACE FINOTAPI. THIS INTERFACE IS USED TO CREATE A SHAPES OBJECT (I.E., IOT DATA) IN

FINOT. .. 23

TABLE 24- INTERFACE FINOTAPI. THIS INTERFACE IS USED TO UPDATE A SHAPES OBJECT (I.E., IOT DATA) IN

FINOT. .. 24

TABLE 25 - INTERFACE FINOTAPI. THIS INTERFACE IS USED TO DELETE A SHAPES OBJECT (I.E., IOT DATA,
CURRENT AND HISTORICAL) IN FINOT. ... 26

TABLE 26 – GNOMON’S INTERFACES. ... 27

TABLE 27 – FHIR MQ TEST CASES .. 27

TABLE 28 - BIG DATA PLATFORM INBOUND API: ... 30

TABLE 29 - BIG DATA PLATFORM OUTBOUND API: .. 31

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

viii

TABLE 30 - CASE-INB-01. THIS TEST CASE CHECKS IF A NEW USER CAN BE REGISTERED TO THE INBOUND API
SUCCESSFULLY.. 34

TABLE 31 - CASE-INB-02. THIS TEST CASE CHECKS IF A NEW USER CAN BE LOGGED IN TO THE INBOUND API
SUCCESSFULLY.. 35

TABLE 32 - CASE-INB-03. THIS TEST CASE CHECKS IF A FHIR DATA JSON CAN BE UPLOADED TO THE INBOUND

API SUCCESSFULLY. ... 35

TABLE 33 - CASE-OUT-01. THIS TEST CASE CHECKS IF SLEEP ACTIVITY DATA CAN BE FETCHED FROM THE

OUTBOUND API SUCCESSFULLY. ... 36

TABLE 34 - CASE-OUT-02. THIS TEST CASE CHECKS IF SLEEP ACTIVITY DATA CAN BE FETCHED FROM THE

OUTBOUND API SUCCESSFULLY FOR A GIVEN USER_ID.. 37

TABLE 35 - CASE-OUT-03. THIS TEST CASE CHECKS IF SLEEP ACTIVITY DATA CAN BE FETCHED FROM THE

OUTBOUND API SUCCESSFULLY FOR A GIVEN A DATE RANGE. ... 38

TABLE 36 - CASE-OUT-04. THIS TEST CASE CHECKS IF SLEEP ACTIVITY DATA CAN BE FETCHED FROM THE

OUTBOUND API SUCCESSFULLY FOR A GIVEN USER_ID AND A DATE RANGE. 38

TABLE 37 - CASE-OUT-05. THIS TEST CASE CHECKS IF PHYSICAL ACTIVITY DATA CAN BE FETCHED FROM THE

OUTBOUND API SUCCESSFULLY. ... 39

TABLE 38 - CASE-OUT-06. THIS TEST CASE CHECKS IF PHYSICAL ACTIVITY DATA CAN BE FETCHED FROM THE

OUTBOUND API SUCCESSFULLY FOR A GIVEN USER_ID.. 40

TABLE 39 - CASE-OUT-07. THIS TEST CASE CHECKS IF PHYSICAL ACTIVITY DATA CAN BE FETCHED FROM THE

OUTBOUND API SUCCESSFULLY FOR GIVEN A DATE RANGE... 41

TABLE 40 - CASE-OUT-08. THIS TEST CASE CHECKS IF PHYSICAL ACTIVITY DATA CAN BE FETCHED FROM THE

OUTBOUND API SUCCESSFULLY FOR A GIVEN USER_ID AND A DATE RANGE. 42

TABLE 41 - CASE-OUT-09. THIS TEST CASE CHECKS IF VITALS CONTROL CAN BE FETCHED FROM THE OUTBOUND

API SUCCESSFULLY. ... 42

TABLE 42 - CASE-OUT-10. THIS TEST CASE CHECKS IF VITALS CONTROL DATA CAN BE FETCHED FROM THE

OUTBOUND API SUCCESSFULLY FOR A GIVEN USER_ID.. 43

TABLE 43 - CASE-OUT-11. THIS TEST CASE CHECKS IF VITALS CONTROL CAN BE FETCHED FROM THE OUTBOUND

API SUCCESSFULLY FOR A GIVEN A DATE RANGE. ... 44

TABLE 44 - CASE-OUT-12. THIS TEST CASE CHECKS IF VITALS CONTROL DATA CAN BE FETCHED FROM THE

OUTBOUND API SUCCESSFULLY FOR A GIVEN USER_ID AND A DATE RANGE. 45

TABLE 45 - CASE-OUT-13. THIS TEST CASE CHECKS IF ANOMALY DETECTION DATA CAN BE FETCHED FROM THE

OUTBOUND API SUCCESSFULLY. ... 46

TABLE 46 - CASE-OUT-14 THIS TEST CASE CHECKS IF ANOMALY DETECTION DATA CAN BE FETCHED FROM THE

OUTBOUND API SUCCESSFULLY FOR A GIVEN USER_ID.. 47

TABLE 47 - CASE-OUT-15. THIS TEST CASE CHECKS IF ANOMALY DETECTION DATA CAN BE FETCHED FROM THE

OUTBOUND API SUCCESSFULLY FOR A GIVEN A DATE RANGE. ... 48

TABLE 48 - CASE-OUT-16. THIS TEST CASE CHECKS IF ANOMALY DETECTION DATA CAN BE FETCHED FROM THE

OUTBOUND API SUCCESSFULLY FOR A GIVEN USER_ID AND A DATE RANGE. 48

TABLE 49 – ASAPA’S INTERFACES. .. 50

TABLE 50 - INTERFACE ASAPAAPI-1. THIS INTERFACE IS USED FOR CHECKING THE HEALTH OF ASAPA. 51

TABLE 51 - INTERFACE ASAPAAPI-2. THIS INTERFACE IS USED TO REGISTER A USER TO ASAPA. 51

TABLE 52 - THE ENDPOINT OF BACKEND HEALTH. ... 60

TABLE 53 – COMPLIANCE CHECK ON ETHICAL REQUIREMENTS. .. 71

TABLE 54 – NOTIFY INTERFACES. ... 75

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

ix

TABLE 55 – NOTIFY: REQUEST DATA FROM THE SERVER. .. 75

TABLE 56 – OMNITORAPI TEST CASES. ... 76

TABLE 57 - ASUMMARY OF THE TESTING STEPS FOR THE UCLM DIGITAL SOLUTION: 96

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

x

List of Figures

FIGURE 1- ANDROID STUDIO AVD MANAGER... 54

FIGURE 2 - SHAPES FRONT-END APP LOGIN SCREEN ... 56

FIGURE 3 - SUCCESSFUL LOGIN IN THE SHAPES FRONT-END APP .. 57

FIGURE 4 - SHAPES FRONT-END APP MAIN SCREEN ... 58

FIGURE 5 – SHAPES MARKETPLACE LOGIN PAGE. ... 61

FIGURE 6 – MARKETPLACE’S HOMEPAGE AFTER SUCCESSFUL LOGIN. ... 62

FIGURE 7 – MARKETPLACE PRODUCT LIST .. 62

FIGURE 8 – MARKETPLACE: CREATE NEW PRODUCT. ... 63

FIGURE 9 – MARKETPLACE PRODUCT LIST. ... 63

FIGURE 10 – MARKETPLACE’S PRODUCT INFORMATION PAGE. .. 64

FIGURE 11 – MARKETPLACE: ADDITIONAL PRODUCTION INFORMATION DETAILS. 65

FIGURE 12 - MARKETPLACE: PRODUCT PURCHASE SCENARIO (STEP 1). .. 65

FIGURE 13 - MARKETPLACE: PRODUCT PURCHASE SCENARIO (STEP 2). .. 66

FIGURE 14 - MARKETPLACE: PRODUCT PURCHASE SCENARIO (STEP 3). .. 66

FIGURE 15 – BEFORE FILLING PROFILE DETAILS. ... 67

 FIGURE 16 - AFTER FILLING PROFILE DETAILS. ... 67

FIGURE 17 – VERIFY STATUS... 68

FIGURE 18 – MARKETPLACE CHECKOUT PAGE. .. 68

FIGURE 19 – SHAPES MARKETPLACE HOMEPAGE AFTER SUCCESSFUL REGISTRATION OF A NEW PRODUCT. 69

FIGURE 20 - DEPLOYMENT DIAGRAM OF FACECOG. ... 78

FIGURE 21 – ADILIB’S WEB-BASED INTERFACE. .. 86

FIGURE 22 – WEBCHAT WIDGET. ... 86

FIGURE 23 – DEMO CHATBOT. .. 90

FIGURE 24 – LEGEND USED IN TEST MONITORING PIPELINE. .. 92

FIGURE 25 – ADMIN ACTIONS DEVELOPED AND TESTED. .. 92

FIGURE 26 – MANAGER ACTIONS DEVELOPED AND TESTED. .. 93

FIGURE 27 – FACILITY, TOTEM AND EVENT ACTIONS DEVELOPED AND TESTED. ... 93

FIGURE 28 – END-USER ACTIONS DEVELOPED AND TESTED. .. 94

FIGURE 29 – TRAINER ACTIONS DEVELOPED AND TESTED.. 94

FIGURE 30 – ROUTINE AND EXERCISE ACTION IMPLEMENTED AND TESTED. ... 95

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

xi

Table of Acronyms and Abbreviations
Table 2 – Acronyms and Abbreviations.

Acronym Description

AIV Assembly, Integration and Verifications

API Application Programming Interface

App Application

ASAPA Authentication, Security and Privacy Assurance

CO Consortium only dissemination level

PU Public Dissemination level

DoA Description of the Action

EC European Commission

FHIR Fast Healthcare Interoperability Resources

ICD Interface Control Document

GDPR General Data Protection Regulation

JSON JavaScript Object Notation

MedSyn MedicalSyn GmbH

OMN Omnitor AB

PM Person Month

QA Quality Assurance

RAMS Reliability, Availability, Maintainability, Safety of Means & People

REST REpresentational State Transfer

RIA Research and Innovation Action

SciFY Science for You

STC Scientific Technical Coordinator

TP Technological Platform

TRD Technical Requirements Document

UCLM Universidad de Castilla - La Mancha

URL Uniform Resource Locator

VICOM Vicomtech

WP Work Package

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

xii

Executive Summary
The deliverable D4.3 “Integration Plan and Test Cases” reports on the first phases of
work produced in Task 4.8. “Integration and Testing of SHAPES Technological
Platform” with respect to planned actions related to integration and deployments of the
SHAPES platform for use case evaluations. As such it has also included contributions
from all partners involved in WP4 tasks related to the implementation of relevant
technical solutions as well as Digital Solutions developed in WP5 and Pilot Themes in
WP6.

The structure of the document is as follows:

Section 1 introduces the methodologies and technologies implemented and
concerning the integration of the SHAPES core components into the SHAPES core
platform and outlines the scope and structure of the document.

Section 2 described the overall assembly, integration and testing plan of core
components, as well as organisation of reference code repository. It also identifies
approaches used for both lab and release types of deployments.

Section 3 describes deployment, interfaces, and integration and validation tests of the
core components. Each component owner describes the main functionality of the
component in question, its deployment options and interfaces, and finally the test
cases for testing their components’ interfaces.

Section 4 summarises the outcomes of Task 4.8 and state of Technological Platform
integration and testing, demonstrating its readiness for subsequent integration with
Digital Solutions in view of further deployment in Pilot Themes.

Section 5 contains an obligatory Ethical Self-Check table as requested by WP8.

Appendices describe integration of Digital Solutions with the most important and
essential core components of the SHAPES core Technological Platform, those being
ASAPA (authentication system being a pre-requisite for being able to access any of
the core components within the SHAPES-TP) and the Front-end application (offering
single point of access for Digital Solutions and the SHAPES-TP).

 D4.3: Integration Plan and Test Cases

1

1 Introduction and Methodologies
Deliverable D4.3 “Integration Plan and Test Cases” describes the plan for the integra-
tion of the software components into the SHAPES core platform and testing of their
proper functioning as part of the integrated prototype. An extensive set of test cases
for each component implemented in the development tasks is documented to validate
that the interfaces of each component which is an outcome of the work in WP4 are
well-functioning.

1.1 Partners Involved in Relevant Tasks in WP4

The main task producing this deliverable was Task 4.8 (Integration and Testing of
SHAPES TP) that focussed on the integration and validation of the integrated
SHAPES technological platform. However, since not all involved partners were
involved in this specific task, we’ve asked additional partners like EDGE and VICOM
to contribute with respect to their individual core components as part of their effort in
Tasks 4.3 (Implementation of the Mediation Framework and Interoperability Services),
Task 4.5 (Human Interaction and Visual Mapping) and Task 4.7 (Task 4.7: SHAPES
Gateway Reference Implementation). A complete list of consortium partners
contributing to deliverable D4.3 was as follows:

Table 3 – Deliverable Contributors.

ID Short Name Role

15 ICOM

Leader of WP4, Tasks 4.1, 4.2, 4.3 and 4.8 and
deliverables D4.1 and D4.3. ICOM has led integration of
the whole D4.3 deliverable and to specific sections 1, 2
introductory part of 3, and 3.1 related to symbIoTe.

8 EDGE
Contributed to section 3.2.7 related to the Frontend App
and Annex 2 related to digital solutions integration in
mobile devices.

12 FINT
As a leader of Task 4.7, FINT contributed to specific
sections 3.2.2 & 3.2.3 on IoT and gateway components

13 GNO
It contributed to sections 3.2.4, 3.2.4.1-3.2.4.3 directly
related to their FHIR interoperability component

16 KOM
Supported work in Task 4.8 with respect to offline
access to SHAPES-TP from their robots

18 MedSyn Its contributions are in Annex 1 (1.5) and Annex 2

20 OMN Its contribution can be found in Annex 1 (1.1)

22 PAL
Supported work in Task 4.8 with respect to offline
access to SHAPES-TP from their robots

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

2

26 SciFy Its contribution is provided in Annex 2

27 HMU
As a leader of Task 4.6, it contributed specifically to
sections 3.2.6 & 3.2.8, related to its ASAPA component

28 TREE
As a leader of Task 4.4, it contributed specifically to
sections 3.2.5 & 3.2.7, referring to its Datalake and
Analytics engine components in a core of SHAPES-TP

29 UCLM Its contribution can be found in Annex 1 (1.4)

35 VICOM
As a leader of Task 4.5, it contributed specifically to
Annex 1 (1.2 & 1.3)

1.2 Field of Application

This document is applicable to the remaining work within WP4 aiming at testing the
integration of the core components into SHAPES TP, as well as the integration with
the digital solutions that will be implemented in WP5. The various modules of the
SHAPES TP will be integrated and tested in laboratory environment from a functional
perspective. The integrated prototype will be ready to be deployed for the pilots and
tested by the end users in accordance to the scenario uses cases.

1.3 Methodology for Test Case Deployment

The project consortium has followed the integration strategy, described in [1] for the
implementation of the software components and their incorporation to the integrated
SHAPES core platform. This deliverable describes in detail the methodology used
towards the preparation of the integration activities, in order to successfully deliver the
integrated software prototype in incremental releases.

A micro-service architecture has been followed to develop the SHAPES core platform,
as a collection of loosely coupled components, the SHAPES core components, and
enable their independent development, maintenance and deployment. A GitHub
repository is available for maintaining the source code of all core components, and
necessary information for building and deploying each component, such as the Docker
files and the Docker compose files. Each software component is encapsulated in a
container image and uploaded at Docker Hub, which is used as the Docker container
repository for the purposes of the project.

The containerised components are deployed at the testing environment, that is the
infrastructure that is set up to perform the integration activities and testing, using the
provided configuration files. Each SHAPES core component provides a set of well-
defined interfaces for its communication and inter-connection with other SHAPES core
components.

Test cases for each of the components’ interfaces and the relevant scripts required for
their testing are provided by the respective SHAPES partners (component owners) to
be used by the integrator, ICOM, in order to perform the integration testing. For

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

3

RESTful APIs, an HTTP request is sent to the relevant endpoint(s) to be tested and
the response received is validated based on the expected result. In case of failures
the relevant developers are informed to fix any errors. When all test cases of each
SHAPES core component are successfully completed, the source code from the
develop branch is pushed to the master branch

1.4 Structure and Scope of the Document

The document structure is composed of the following Sections:

• Section 1: Introduction and Methodologies
Describes the methodologies for the integration activities.

• Section 2: Assembly and Integration Plan
Lists the tools and implementation framework used for the deployment
of core components and their integration into a software prototype.

• Section 3: Integration testing of the software components
Describes the testing of the software interfaces among the core
components of the SHAPES core platform prototype. Reports
deployment requirements, the API interfaces and the testing and
validation efforts.

• Section 4: Results and Conclusions

• Annexes: provide additional information regarding the integration of digital
solutions.

o Annex 1: describes integration of NOT!FY (OMN), FACECOG (VICOM), Adilib

Chatbot (VICOM), At-home Rehabilitation System (UCLM) and MedicalSyn
(MedSyn) digital solutions to the SHAPES core platform.

o Annex 2: describes the integration plan for digital solutions with the ASAPA and
Front-end app components.

1.5 Relation to other work in the project

This deliverable is based on results from:

• D4.1 “SHAPES TP Requirements and Architecture” (due M18)

• D4.2 “SHAPES TP Development Tools and Capabilities Toolkit” (due M24)

• D4.6 “SHAPES Interoperability Reference Testing Environment” (due M18)

• D6.1 “SHAPES Pan-European Pilot Campaign Plan” (due M6)

• D8.4 “Ethics Framework for Shapes solution” (due M6)

The outcomes from D4.3 feed to:

• WP6: “SHAPES Pan-European Pilot Campaign”

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

4

• WP7: “Market Shaping, Scale-up Business Models and Socio-Economic Impact”

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

5

2 Assembly and Integration Plan
This section describes the integration plan that is followed within the SHAPES project
to ensure the successful delivery of the SHAPES core platform. It describes the
implementation framework used for the development of the SHAPES core
components and their integration into a working software prototype. It sets common
methodologies, tools and workflows to be followed by all SHAPES developers in order
to facilitate the development, deployment and testing of the integrated system.

2.1 Tool chain

GitHub and Docker tools will be used to facilitate the implementation workflow and
support incremental feature deployment, maintenance and scalability of the highly
distributed SHAPES ecosystem.

2.2 Version control

Git is an open-source distributed version control system that allows developers to
collaborate, manage and track changes of the source code. It allows developers to
work in parallel, by using a local copy of the repository at their working environment
and committing their changes to it. When ready, local changes can be pushed onto a
remote repository (the git server), where other developers can see the changes and
pull them to update their local repository. Also, multiple local branches are supported
that can enable the parallel development of features, as well as the management of
product releases. Git will be used in the SHAPES project to enable its developers to
work in parallel and collaborate on the source code for the development and
maintenance of SHAPES core components. Two main branches are maintained to
facilitate the integration and release process; a master branch pointing to the latest
source code in production-ready state (i.e., latest release version) and a develop
branch pointing to the latest development changes to be delivered for a next release.

2.3 Code repository

GitHub is a cloud-based Git repository hosting service for open-source projects. It will
be used to host and make available the source code of the SHAPES project. GitHub
public repositories and free accounts are used. More specifically, a remote GitHub
repository has been set at: https://github.com/SHAPES-H2020.

To reflect the micro service architecture used, a multi-repository setup is used with the
SHAPES core components being bundled into GitHub super-repositories. In that way,
independent development of the software components can be achieved with clear
ownership. Also, the build is faster due to the smaller code base, as developers need
to download and build only the repositories they use. Project members are able to
download the latest versions, fetch changes from other members, implement their
features locally and commit their changes back to the shared repository. For each
repository, a main contact is assigned administrator rights in order to be able to

https://github.com/SHAPES-H2020

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

6

manage their corresponding repository, create projects related to their component,
add team developers, and organise their code base, as needed. Finally, GitHub
provides access control and collaboration features such as bug tracking, feature
requests and task management, which can be utilised during the development phase
in the project.

2.4 Continuous Integration Server

Continuous integration is the practice of merging the source code changes frequently
at a regular basis to develop and test the software in smaller increments. Travis CI1 is
a continuous integration server that supports the development process by enabling
the automatic build and testing of code changes. It also allows to manage notifications
and automatic deployment of the software. Commands for building, testing or
deployment can be specified in a configuration file (travis.yml) in the correct code
branch.

Travis is used for the purposes of the SHAPES project to automatically build the
SHAPES core components software frequently. It has a smooth integration with
GitHub in order to support the automatic software build and testing. A GitHub user has
been setup for pushing code to the develop branch of the components. The URL where
the SHAPES-H2020 organization can be accessed from in Travis is: https://app.travis-
ci.com/organizations/SHAPES-H2020.

The Travis CI server is notified by GitHub, whenever a new commit is pushed to that
repository or when a new pull request is submitted. Responsible developers are
notified whenever new commits are pushed to that repository or a pull request is
submitted.

2.5 Component’s integration

RESTful APIs will be used to expose services provided by the SHAPES core
components.

Swagger2 is an open-source tool that provides a formal format to develop and
document RESTful APIs. The OpenAPI Specification (currently in version 3.0.33)
defines a standard, language-agnostic interface to RESTful APIs in a way that both
humans and computers can understand the RESTful services and their functionalities.
It allows to describe the entire API including any available endpoints and operations
on each endpoint (GET, POST etc.). Swagger is used in the context of the SHAPES
project to define the RESTful APIs that SHAPES core components expose.

Finally, regarding the asynchronous communication between the SHAPES core
components, a RabbitMQ server is deployed at ICOM’s premises to enable the

1 https://www.travis-ci.com/
2 Swagger: https://swagger.io/
3 Open API spec v3.0.3: https://swagger.io/specification

https://app.travis-ci.com/organizations/SHAPES-H2020
https://app.travis-ci.com/organizations/SHAPES-H2020
https://www.travis-ci.com/
https://swagger.io/
https://swagger.io/specification

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

7

exchange of notifications between SHAPES core components. Asynchronous APIs for
the components that publish/write to a topic and “subscribe to”/“read from” a topic, are
defined in the relevant components’ interfaces.

There are different serialization formats to be used for the transmission of data
between applications. Among them, JavaScript Object Notation (JSON) is a standard
text-based format for representing structured data based on JavaScript object syntax.
It is commonly used for transmitting data in web applications, as it is human readable
and lightweight and can be used for the SHAPES project needs.

2.6 Lab deployment

Docker is a software platform that allows the quick creation, testing and deployment
of applications, by packaging software into standardized units called containers.

Each SHAPES core component is encapsulated in a container image to be deployed
independently in the form of a Docker container. Component owners, the consortium
partners that own SHAPES core components need to provide the configuration files
required to build the Docker images for the deployment of their components, such as
Docker files or Docker Compose files for more complex components.

As described in [1], Docker Hub4 is a service provided by Docker for discovering and
sharing container images within a team. Docker Hub is used as the container image
repository for the needs of the SHAPES project in order to store and share the Docker
images required for the deployment and integration of the SHAPES core components.
For this purpose, a Docker Hub account has been set up at the following URL:
https://hub.docker.com/u/shapes2020. The Docker file of each SHAPES core
component is used to automatically build the Docker images of the SHAPES core
components within Travis CI and upload them to the Docker Hub repository. The
container images uploaded at Docker Hub are then used to deploy the SHAPES core
components at the testing infrastructure, using deployment YAML configuration files
to perform the integration testing which is described in detail in the next section. When
integration testing succeeds the new release is delivered.

4 Docker HUB: https://hub.docker.com

https://hub.docker.com/u/shapes2020
https://hub.docker.com/

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

8

3 Integration testing of the software components
This section describes the testing of the software interfaces among the core
components of the SHAPES core platform prototype. Reporting provides general
information for each software component, the deployment requirements and options
and the API interfaces provided for integration along with other SHAPES core
components and their testing and validation.

3.1 Testing methodology

Integration testing is the phase in software testing where one or two individual software
components are combined and tested as a group. It is used to test a service and its
functionalities to validate the interactions between the subsystems and ensure that
they work fine together, for example the database and the application. It is performed
once the new functionalities of the components to be included in the new release are
implemented, with the scope of detecting errors related to the components interfaces.
In order to release the new version, all the integration tests defined for the testing of
the software components of the system must be successful. Within the context of the
SHAPES project, test cases for testing the SHAPES core components’ interfaces and
their functionalities are defined with the help of the component owners. The tests
defined are then executed by the integrator (ICOM) to ensure the correct functioning
of the interfaces and smooth interaction between the integrated components. In case
of test failures, the respective SHAPES developers are notified to fix identified bugs to
ensure the correct operation of the system to be released.

3.2 Components

3.2.1 The symbIoTe orchestration middleware (ICOM)

The symbIoTe is the IoT middleware of the SHAPES core platform, enabling the
discovery and sharing of IoT health devices and services across IoT platforms, digital
solutions or SHAPES core components, in a unified and secure manner. It allows the
exchange of resource meta-information required to describe the IoT devices and
services to be exposed, implementing a secure interworking protocol between the IoT
platforms, gateways and smart devices.

3.2.1.1 Overview of deployment options

The symbIoTe software can be deployed using Docker. The symbIoTe core server
acts as a centralised IoT search engine, where IoT platforms can register their
resources and users (such as third-party applications) and search for these resources.
The symbIoTe server is deployed at ICOM’s premises at the following URL:
https://symbiote-core.intracom-telecom.com/, running the latest stable version.

https://symbiote-core.intracom-telecom.com/

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

9

Additionally, a symbIoTe API component has been developed in order to offer a set of
REST services designed to cover basic client requirements without requiring
applications or developers to download symbIoTe libraries. The symbIoTe API offers
services for a user to interact with symbIoTe, such as the registration of a valid
(ASAPA) user to the symbIoTe ecosystem, the registration, accessing and listing of
resources (L1 or L2 compliance levels).

The symbIoTe API has been developed and deployed in a Docker environment,
running at the following URL: http://146.124.106.199:8443.

3.2.1.2 Interfaces (I/F) offered

Table 4 – SymbIoTe API interfaces.

I/F Feature Endpoint/Queue Description
Producer/
Resource

Consumer/
Caller

REST
POST –
register

user
/symbiote/admin/registerUser/me/toSymbiote

It registers
an existing

SHAPES
user to

symbIoTe.

symbIoTeAPI

Any other
SHAPES

core
component

REST
POST –
register
resource

/symbiote/resource/register/L1Res

It registers
an L1

resource to
symbIoTe.

symbIoTeAPI

Any other
SHAPES

core
component

REST
POST –

get
resource

/symbiote/resource/get/L1Res

It returns a
list of L1

resources
registered

to
symbIoTe.

symbIoTeAPI

Any other
SHAPES

core
component

REST
POST –
access

resource
/symbiote/resource/access/sensor/L1Res

It provides
access to L1

resource.
symbIoTeAPI

Any other
SHAPES

core
component

REST
POST –
delete

resource
/symbiote/resource/delete/L1Res

It deletes an
L1 resource

from
symbIoTe.

symbIoTeAPI

Any other
SHAPES

core
component

REST
POST –
get L2

resource
/symbiote/resource/get/ListOfL2

It returns a
list of L2

Resources.
symbIoTeAPI

Any other
SHAPES

core
component

http://146.124.106.199:8443.

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

10

I/F Feature Endpoint/Queue Description
Producer/
Resource

Consumer/
Caller

REST

POST –
info of

L2
resource

/symbiote/resource/get/L2Res

It returns
info about

L2
Resources.

symbIoTeAPI

Any other
SHAPES

core
component

REST

POST –
access
an L2

resource

/symbiote/resource/access/L2Res
It provides
access to a

L2 resource.
symbIoTeAPI

Any other
SHAPES

core
component

3.2.1.3 Test cases and Validation

Table 5 - Interface symbIoTeAPI-1. This interface is used to register an existing ASAPA user to symbIoTe.

I/F
Test
case

Method Call Result

symbIoTeAPI-
1

sAPI-
1.A

POST <sAPI>:8082/symbiote/admin/registerUser/me/toSymbiote Pass/Fail

sAPI-1.A. This test case checks if a valid ASAPA user is registered to symbIoTe
successfully. Parameters required:

{

 "asapatoken": "string"

}

Response is given in JSON:

{

 "id": "string",

 "name": "string"

}

Table 6 - Interface symbIoTeAPI-2. This interface is used to register a new L1 resource to symbIoTe.

I/F Test case Method Call Result

symbIoTeAPI-2 sAPI-2.A POST <sAPI>:8082/symbiote/resource/register/L1Res Pass/Fail

sAPI-2.A. This test case checks if an L1 resource is successfully registered to

symbIoTe.

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

11

Parameters required:

{

 "platformusertoken": "string",

 "resourceinternalid": "string",

 "resourceplatformid: "string",

 "resourceinfo":{ List }

}

Response is given in JSON:

{

“internalid": "string",

"name": "string",

"code": "string"

}

Table 7- Interface symbIoTeAPI-3. This interface is used to get a list of L1 resources.

I/F Test case Method Call Result

symbIoTeAPI-3 sAPI-3.A POST <sAPI>:8082 /symbiote/resource/get/L1Res Pass/Fail

sAPI-3.A. This test case checks if a list of L1 resources is returned.

Parameters required:

{

 "platformusertoken": "string",

 "resourceplatformid":"string"

}

Response is given in JSON:

List[{

"name": "string",

"id": "string"

}]

Table 8 - Interface symbIoTeAPI-4. This interface is used to get resource information from an L1 resource using
its name.

I/F Test case Method Call Result

symbIoTeAPI-4 sAPI-4.A POST <sAPI>:8082 /symbiote/resource/get/L1Res Pass/Fail

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

12

sAPI-4.A. This test case checks if info about an L1 resource is returned.

Parameters required:

{

 "platformusertoken": "string",

 "resourceplatformid":"string",

 "resourcename":"string"

}

Response is given in JSON:

{

"name": "string",

"id": "string",

"url": "string",

"code": "string"

}

Table 9 - Interface symbIoTeAPI-5. This interface is used to get resource information from an L1 resource using
its id.

I/F Test case Method Call Result

symbIoTeAPI-5 sAPI-5.A POST <sAPI>:8082 /symbiote/resource/get/L1Res Pass/Fail

sAPI-5.A. This test case checks if info about an L1 resource is returned.

Parameters required:

{

 "platformusertoken": "string",

 "resourceplatformid":"string",

 "resourceid":"string"

}

Response is given in JSON:

{

"name": "string",

"id": "string",

"url": "string",

"code": "string"

}

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

13

Table 10 - Interface symbIoTeAPI-6. This interface is used to access an L1 resource using its name.

I/F Test case Method Call Result

symbIoTeAPI-6 sAPI-6.A POST <sAPI>:8082 /symbiote/resource/access/sensor/L1Res Pass/Fail

sAPI-6.A. This test case checks if L1 resource can be accessed using its name.

Parameters required:

{

 "platformusertoken": "string",

 "resourceplatformid":"string",

 "resourcename":"string"

}

Response is given in JSON:

{

"status": "string",

"code": "string"

}

Table 11 - Interface symbIoTeAPI-7. This interface is used to delete an L1 resource.

I/F Test case Method Call Result

symbIoTeAPI-7 sAPI-7.A POST <sAPI>:8082 /symbiote/resource/access/sensor/L1Res Pass/Fail

sAPI-7.A. This test case checks if an L1 resource is successfully deleted.

 Parameters required:

{

 "resourceplatformid":"string",

 "resourceinternalid":"string"

}

Response is given in JSON:

{

"result": "string",

"code": "string"

}

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

14

Table 12 - Interface symbIoTeAPI-8. This interface is used to retrieve a list of L2 resources.

I/F Test case Method Call Result

symbIoTeAPI-8 sAPI-8.A POST <sAPI>:8082 /symbiote/resource/get/ListOfL2 Pass/Fail

sAPI-8.A. This test case checks if a list of L2 resources is successfully returned.

 Parameters required:

{

 "paamusertoken": "string",

 "resourceplatformid": "string",

 "federationid": "string"

}

Response is given in JSON:

{

"code": "string",

"descritpion": "string"

}

Table 13 - Interface symbIoTeAPI-9. This interface is used to get information about an L2 resource.

I/F Test case Method Call Result

symbIoTeAPI-9 sAPI-9.A POST <sAPI>:8082 /symbiote/resource/get/L2Res Pass/Fail

sAPI-9.A. This test case checks if information about L2 resources are successfully

returned.

 Parameters required:

{

 "paamusertoken": "string",

 "resourceplatformid": "string",

 "resourcename": "string",

 "resourceid": "string",

 "federationid": "string"

}

Response is given in JSON:

{

"code": "string",

"descritpion": "string"

}

http://146.124.106.199:8221/swaggergui/swagger/#/L2%20Resources/post_symbiote_resource_get_ListOfL2

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

15

Table 14 - Interface symbIoTeAPI-10. This interface is used to access an L2 resource.

I/F Test case Method Call Result

symbIoTeAPI-10 sAPI-10.A POST <sAPI>:8082 /symbiote/resource/access/L2Res Pass/Fail

sAPI-10.A. This test case checks if an L2 resource can be successfully accessed.

 Parameters required:

{

 "paamusertoken": "string",

 "resourceplatformid": "string",

 "resourcename": "string",

 "resourceid": "string",

 "federationid": "string"

}

Response is given in JSON:

{

"code": "string",

"descritpion": "string"

}

3.2.2 Gateway (FINT)

SHAPES Gateway (GW) facilitates the interconnection of the edge IoT devices with
the SHAPES Core cloud platform enabling as such the accommodation of the IoT
collected data to the FINoT IoT platform (part of the SHAPES core); for more details,
please see [1], section 6.2.2.

3.2.2.1 Overview of deployment options

SHAPES GW is to be deployed on pilot premises where the IoT edge sensors will
reside. In this way, these sensors will be able to connect to the GW and forward their
data where the existing FINoT middleware can be utilised for forwarding the gathered
data to the FINot platform. Prerequisites for the deployment are the existence of a
power outlet (220V AC), and internet connectivity (i.e., the possibility to connect to the
pilot's LAN or WLAN).

3.2.2.2 Interfaces offered

As documented in [1], section 6.2.2, the majority of the interfaces implemented from
the SHAPES GW are internal and there is no possibility to access them directly from
external entities (including the SHAPES core platform). In this context, the interfaces
offered so far for testing external integration is for querying the GW status:

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

16

Table 15 – SHAPES GW Interfaces.

I/F Feature Endpoint/Queue Description
Producer/
Resource

Consumer/ Caller

REST
GET–
live

/gw/live
Checks if the GW

is online
GWAPI

Any other SHAPES
core component

3.2.2.3 Test cases and Validation

Table 16 - Interface GWAPI. This interface is used to check the GW status.

I/F Test case Method Call Result

GWAPI gwAPI-1 GET <gwAPI>:9999/gw/live Pass/Fail

gwAPI-1. This test case checks if the GW is live. Parameters required:

Response is given in JSON:

{

 "id": "string",

 "status": "string"

}

3.2.3 FINoT IoT platform (FINT)

FINoT is a FIWARE-based IoT cloud management platform able to orchestrate and
interconnect almost any kind of sensor, actuator and data logger (for more details
please see [1], section 6.2.3.).

3.2.3.1 Overview of deployment options

FINoT is a 24/7 cloud based IoT platform, and it is not to be redeployed in the project's
context. As such it will be available remotely, via a project wide available REST API
(the API is included in [1], Annex 2, detailing preliminary API used by FINoT platform
for communication with other core components”), using HTTPS as the secure
communication protocol. Finally, there is no need for any specialised HW or SW for
accessing the FINoT services; any standard browser or programming framework
supporting REST API development (almost all modern programming frameworks do
so) suffice for that purpose; the only requirement is to have a valid set of user
credentials (created upon request).

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

17

3.2.3.2 Interfaces offered

The following interfaces are expected to be more in use for the project’s needs:

Table 17- FINoT’s platform interfaces

I/F Feature Endpoint/Queue Description
Producer

/
Resource

Consumer/
Caller

REST

POST –
Authent

icate
user

/ auth/jwt/login

It
authenticates

an existing
FINoT user to

FINoT.

FINoT API
Any other

SHAPES core
component

REST

POST –
Refresh
the JWT

token

auth/jwt/refresh

It refreshes
the JWT token
extending the
60 minutes,

the user's valid
session with

the FINoT
platform.

FINoT API
Any other

SHAPES core
component

REST

GET

–

List
FINoT

objects

inventory/v1/objects

Retrieves a list

of objects

which match

the given

criteria.

FINoT API
Any other

SHAPES core
component

REST

GET

–

Get
FINoT
object

inventory/v1/objects/<objectI
d>

Retrieves an

object which

match the

given id.

FINoT API
Any other

SHAPES core
component

REST

GET

–

Get
FINoT
object

historica
l data

inventory/v1/objects/<objectI
d>/data

Retrieves an

object’s

historical data.

FINoT API
Any other

SHAPES core
component

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

18

REST

POST

–

Create
FINoT
object

inventory/v1/objects

Creates an

object (e.g.,

IoT

measurement)

in the FINoT

platform

FINoT API
Any other

SHAPES core
component

REST

PATCH

–

Update
FINoT
object

inventory/v1/objects/<objectI
d>

Updates the

object (e.g.,

IoT

measurement)

matching the

given id in the

FINoT

platform

FINoT API
Any other

SHAPES core
component

REST

DELETE

–

Delete
FINoT
object

inventory/v1/objects/<objectI
d>

Deletes an

object (e.g.,

IoT

measurement)

in the FINoT

platform

FINoT API
Any other

SHAPES core
component

For the complete offered interfaces

For the complete offered interfaces, please refer to Annex 2 “FINoT Middleware API
for SHAPES, detailing preliminary API used by FINoT platform for communication with
other core components” of [1] deliverable.

3.2.3.3 Test cases and Validation

This section presents the test cases for the interfaces presented in the previous
section.

Table 18 - Interface finotAPI. This interface is used to authenticate an existing user to FINoT.

I/F
Test
case

Method Call Result

finotAPI fAPI-1 POST <finotAPI>: /auth/jwt/login Pass/Fail

fAPI-1. This test case checks if a valid user is authenticating to FINoT successfully.

Parameters required:

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

19

Response is given in JSON:

3.2.3.3.1 Update JWT token test

Table 19 - Interface finotAPI. This interface is used to refresh the JWT authentication token.

I/F Test case Method Call Result

finotAPI fAPI-2 POST <finotAPI>: /auth/jwt/refresh Pass/Fail

fAPI-2. This test case checks if a valid user presents a valid refresh token to the FINoT
successfully. Parameters required:

Response is given in JSON:

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

20

3.2.3.3.2 List FiNoT objects test

Table 20 - Interface finotAPI. This interface is used to list all of SHAPES objects (i.e., IoT data) hosted in FINoT.

I/F Test case Method Call Result

finotAPI fAPI-3 GET <finotAPI>: inventory/v1/objects Pass/Fail

fAPI-3. This test case checks if a list of objects is returned from FINoT successfully.
Parameters required:

Response is given in JSON:

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

21

3.2.3.3.3 Get FiNoT object test

Table 21 - Interface finotAPI. This interface is used to get a specific SHAPES object (i.e., IoT data) hosted in
FINoT.

I/F Test case Method Call Result

finotAPI fAPI-4 GET <finotAPI>: inventory/v1/objects/<objectId> Pass/Fail

fAPI-4. This test case checks if the objects specified by the given id is returned from

FINoT successfully. Parameters required:

Response is given in JSON:

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

22

3.2.3.3.4 Get FiNoT object historical data test

Table 22 - Interface finotAPI. This interface is used to get a specific SHAPES object (i.e., IoT data) historical data
hosted in FINoT.

I/F Test case Method Call Result

finotAPI fAPI-5 GET <finotAPI>: inventory/v1/objects/<objectId>/data Pass/Fail

fAPI-5. This test case checks if the specified by the given id object’s historical data is

returned from FINoT successfully.

Parameters required:

Response is given in JSON:

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

23

3.2.3.3.5 Create FiNoT object test

Table 23 - Interface finotAPI. This interface is used to create a SHAPES object (i.e., IoT data) in FINoT.

I/F Test case Method Call Result

finotAPI fAPI-6 POST <finotAPI>: inventory/v1/objects/<objectId> Pass/Fail

fAPI-6. This test case checks if an object is created in FINoT successfully. Parameters

required:

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

24

Response is given in JSON:

3.2.3.3.6 Update FiNoT object test

Table 24- Interface finotAPI. This interface is used to update a SHAPES object (i.e., IoT data) in FINoT.

I/F Test case Method Call Result

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

25

finotAPI fAPI-7 PATCH <finotAPI>: inventory/v1/objects/<objectId> Pass/Fail

fAPI-7. This test case checks if an object is updated in FINoT successfully.
Parameters required:

Response is given in JSON:

3.2.3.3.7 Delete FiNoT object test

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

26

Table 25 - Interface finotAPI. This interface is used to delete a SHAPES object (i.e., IoT data, current and
historical) in FINoT.

I/F Test case Method Call Result

finotAPI fAPI-8 DELETE <finotAPI>: inventory/v1/objects/<objectId> Pass/Fail

fAPI-8. This test case checks if an object is deleted in FINoT successfully. Parameters

required:

Response:

3.2.4 FHIR Medical Interoperability (GNO)

The FHIR medical interoperability component facilitates the interoperability and
communication among digital solutions that exchange medical-related information with
each other and/or other SHAPES core components. The main component of the FHIR
interoperability is the Message Queue (MQ).

3.2.4.1 Overview of deployment options

The FHIR MQ is a simple REST API component based on Spring technology. It offers
a simple endpoint secured by Request Header API Key, and is used for exchanging
data between Digital Solutions. It is integrated with Apache Kafka. The FHIR MQ is
deployed using Docker technology and is a set of 3 Docker containers. It can work
with any Linux Distribution but is tested under Ubuntu 18+.

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

27

3.2.4.2 Interfaces offered

Table 26 – GNOMON’s interfaces.

I/F Feature Endpoint/Queue Description
Producer/
Resource

Consumer/ Caller

REST
POST –Exhange
Data from Solu-

tions

/MeasurementSer-
vice/rest/mq/publish

Exhange Data
from Solutions

FHIR MQ
Any other SHAPES
core component

3.2.4.3 Test cases and Validation

Table 27 – FHIR MQ Test Cases

I/F Test Case Description Result

1

DS receives FHIR data from FHIR MQ

Prerequisite

DS has registered to FHIR MQ by
sending Company name, IP Address
and endpoint for sending the mes-

sages to its solution

1. DS sends FHIR
data to FHIR MQ

2. DS receive FHIR
data from FHIR MQ

1. FHIR should respond with
200 OK

2. Other DS’s who are regis-
tered can receive in their
registered endpoint the

payload.

2

DS sends data to FHIR MQ

Prerequisite

DS must have an API-KEY

1. Send FHIR payload
to endpoint with cor-

rect API-key
2. Send FHIR payload

to endpoint with
wrong API-key

3. Send FHIR payload
to endpoint with

non-validated pay-
load

1. REST API responds with
200 OK

2. REST API responds with
403 Forbidden

3. REST API responds with
400 Bad Request

3.2.5 Big Data Platform: Data Lakehouse & Analytics Engine (TREE)

The Big Data Platform combines the Data Lakehouse with the Analytics Engine,
allowing Digital Solutions to send their data to the Data Lakehouse for advance
processing using the AI-based Analytics Engine.

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

28

3.2.5.1 Overview of deployment options

The technologies used for the implementation of the different components of the Big
Data Platform component are open-source, referential and state-of-the-art
technologies in their respective topics. In this way, the entire implementation of the
Platform is decoupled from any specific cloud services.

The Platform is deployed in AWS in three different stages: a first phase that takes
advantage of the required technologies, exposed as AWS services (i.e. BDaaS), a
second phase that uses the platforms managed by AWS that provide the required
technologies (i.e. PaaS) and a third phase in which only the infrastructure offered by
amazon is used (i.e. IaaS) to deploy on it, the required platforms.

In this way, the setup of the Development environment is initially facilitated, enabling
progress in the implementation of the Project and, during the progression of the
Project, it is gradually decoupled from the management services offered by AWS.

The inbound and outbound API interfaces for the Big Data Platform have been
implemented in Python Flask and in Node.js + Amazon Athena technologies. The
inbound API should be configured at launch time with the path to the Tier-0 (RAW data
staging) bucket of the Amazon S3. For the outbound API, the SQL tables should be
created in Amazon Athena corresponding to the formats of the Delta data files stored
in the Amazon S3 Tier-3 (analysis results) bucket. For example, for sleep activity this
SQL create query has been used to create SQL table in Amazon Athena:

 CREATE EXTERNAL TABLE `api2_out_sleep_act`(

 `user_id` string,

 `date` string,

 `start_time` timestamp,

 `latency` double,

 `in_bed` double,

 `sleep_duracion` double,

 `sleep_efficiency` double,

 `n_int_awake` int,

 `n_int_getup` int,

 `int_duration` double,

 `sqi` double,

 `sleep_disconnect` double) ROW FORMAT SERDE

 'org.apache.hadoop.hive.ql.io.parquet.serde.ParquetHiveSerDe'

 STORED AS INPUTFORMAT

 'org.apache.hadoop.mapred.TextInputFormat' OUTPUTFORMAT

 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'

 LOCATION 's3://h2020-shapes-dev/datalakehouse/02-enriched-

tier/api2_out.sleep_activity.delta'

 TBLPROPERTIES ('has_encrypted_data'='false',

 'transient_lastDdlTime'='1626440336')

Physical activity SQL table can be created in Amazon Athena with the following SQL
command:

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

29

CREATE EXTERNAL TABLE `api2_out_phys_act`(

 `user_id` string,

 `date` date,

 `steps` int,

 `sedentary` int,

 `active` int,

 `adl` int,

 `intermediate` int,

 `exercise` int,

 `light_exercise` int,

 `moderate_exercise` int,

 `intense_exercise` int,

 `rest_exercise` int,

 `disconnect` int) ROW FORMAT SERDE

 'org.apache.hadoop.hive.ql.io.parquet.serde.ParquetHiveSerDe'

 STORED AS INPUTFORMAT

 'org.apache.hadoop.mapred.TextInputFormat'

 OUTPUTFORMAT

 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'

 LOCATION

 's3://h2020-shapes-dev/datalakehouse/02-enriched-

tier/api2_out.phys_activity.delta'

 TBLPROPERTIES ('has_encrypted_data'='false',

 'transient_lastDdlTime'='1626441698')

For deployment, two Docker images have been built, one for the inbound and another
for the outbound APIs. For the deployment of these Docker containers into a
production environment, those containers should have configured with access to the
Big Data Platform S3 Amazon storage (either to be on the same Amazon cluster, or
to be within the IP ranges allowed by the Amazon Cloud network / firewall access to
the corresponding S3 Delta Lake cluster).

3.2.5.2 Interfaces offered

At a global scale, the Big Data Platform has two major interfaces with the other
systems, both with the HTTP REST protocol:

• The inbound data API which allows the raw IoT and FHIR data to be imported
from FINoT (through the symbIoTe connector) and the FHIR connector into the
SHAPES Big Data Platform, respectively. In order to scale up the number of
data records passed per HTTP API call, the data is transferred in a form of

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

30

JSON file payloads, which are stored into Tier-0 (RAW data) staging of the
Platform on Amazon S3 for further data processing (cleansing, ETL, analysis,
etc). This API interface has been implemented in Python Flask.

• The outbound data API which allows the results of the data analysis carried out
in the Big Data Platform to be fetched from the Platform into the Digital Solu-
tions system. These data are composed of the initial log-like IoT sensor data
plus a reconstructed data per each original data record, thus, there is no row_id
or object_id and API calls fetch data filtered either per user_id value or per
dates values. This API has been implemented with Node.js reading data from
the Amazon S3 Tier-3 (results data) storage of the Platform via Amazon Athena
SQL-like service.

For both the inbound and outbound API interfaces, the authentication has been
implemented based on JWT token technology. New user should sign up once to set
up his/her username and password. Once signed up, he/she should sign in for every
working session, providing username/password and receiving back an authorization
JWT token, which should be used in all other regular (get/post) API HTTP calls.

The API call specifications are presented below per inbound and outbound interfaces
respectively.

Table 28 - Big Data Platform inbound API:

I/F Feature Endpoint/Queue Description Producer/
Resource

Consumer/
Caller

REST
POST –

register user

PATH:

/v1/signup

HTTP header:

'content-type:
application/json'

HTTP data:

'{"username": "my_user",
"password": "my_pas123"}'

Register a new user
Big Data

Platform API
Digital

Solutions

REST

POST

-

login

existing user

PATH:

/v1/signin

HTTP header:

Log in existing user
Big Data

Platform API
Digital

Solutions

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

31

I/F Feature Endpoint/Queue Description Producer/
Resource

Consumer/
Caller

'content-type:
application/json'

HTTP data:

'{"username": "my_user",
"password": "my_pas123"}'

REST
POST –

upload JSON
data

PATH:

/v1/post_data

HTTP header:

"x-access-token: ${TOKEN}"

"Content-Type:
application/json"

HTTP data: <FHIR json data>

Uploads JSON data to
Tier-0 AWS S3 storage

Big Data
Platform API

FHIR

Table 29 - Big Data Platform outbound API:

I/F Feature Endpoint/Queue Description Producer
/

Resource

Consumer
/ Caller

REST

GET – fetch
sleep

activity data

PATH:

/v1/sleep_act

HEADER:

"x-access-token: ${TOKEN}"

Get the N
latest sleep
activity data

rows

Big Data
Platform

API

Digital
Solutions

REST
GET – fetch

sleep
activity data

PATH:

/v1/sleep_act?user_id=00001

HEADER:

"x-access-token: ${TOKEN}"

Get sleep
activity data
rows for a

given user_id
value

Big Data
Platform

API

Digital
Solutions

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

32

I/F Feature Endpoint/Queue Description Producer
/

Resource

Consumer
/ Caller

REST
GET – fetch

sleep
activity data

PATH:

/v1/sleep_act?start_date=2019-10-
27&end_date=2019-10-27

HEADER:

"x-access-token: ${TOKEN}"

Get sleep
activity data
rows for a
given date

range

Big Data
Platform

API

Digital
Solutions

REST
GET – fetch

sleep
activity data

PATH:

/v1/sleep_act?user_id=00001&start_date=201
9-10-27&end_date=2019-10-27

HEADER:

"x-access-token: ${TOKEN}"

Get sleep
activity data
rows for a

given user_id
value and
given date

range

Big Data
Platform

API

Digital
Solutions

REST
GET – fetch

physical
activity data

PATH:

/v1/phys_act

HEADER:

"x-access-token: ${TOKEN}"

Get the N
latest

physical
activity data

rows

Big Data
Platform

API

Digital
Solutions

REST
GET – fetch

physical
activity data

PATH:

/v1/phys_act?user_id=00001

HEADER:

"x-access-token: ${TOKEN}"

Get physical
activity data
rows for a

given user_id
value

Big Data
Platform

API

Digital
Solutions

REST
GET – fetch

physical
activity data

PATH:

/v1/phys_act?start_date=2019-10-
27&end_date=2019-10-27

HEADER:

"x-access-token: ${TOKEN}"

Get physical
activity data
rows for a
given date

range

Big Data
Platform

API

Digital
Solutions

REST
GET – fetch

physical
activity data

PATH:

/v1/phys_act?user_id=00001&
start_date=2019-10-27&end_date=2019-10-27

Get physical
activity data
rows for a

Big Data
Platform

API

Digital
Solutions

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

33

I/F Feature Endpoint/Queue Description Producer
/

Resource

Consumer
/ Caller

HEADER:

"x-access-token: ${TOKEN}"

given user_id
value and

given a date
range

REST
GET – fetch

vitals
control data

PATH:

/v1/vitals_control

HEADER:

"x-access-token: ${TOKEN}"

Get the N
latest vitals
control data

rows

Big Data
Platform

API

Digital
Solutions

REST
GET – fetch

vitals
control data

PATH:

/v1/vitals_control?user_id=0001

HEADER:

"x-access-token: ${TOKEN}"

Get vitals
control data
rows for a

given user_id
value

Big Data
Platform

API

Digital
Solutions

REST
GET – fetch

vitals
control data

PATH:

/v1/vitals_control?start_date=2021-06-
01&end_date=2021-06-01

HEADER:

"x-access-token: ${TOKEN}"

Get vitals
control data
rows for a
given date

range

Big Data
Platform

API

Digital
Solutions

REST
GET – fetch

vitals
control data

PATH:

/v1/vitals_control?user_id=00001&start_date=
2021-06-01&end_date=2021-06-01

HEADER:

"x-access-token: ${TOKEN}"

Get vitals
control data
rows for a

given user_id
value and

given a date
range

Big Data
Platform

API

Digital
Solutions

REST

GET – fetch
anomaly
detection

data

PATH:

/v1/anomaly_detect

HEADER:

"x-access-token: ${TOKEN}"

Get the N
latest

anomaly
detection
data rows

Big Data
Platform

API

Digital
Solutions

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

34

I/F Feature Endpoint/Queue Description Producer
/

Resource

Consumer
/ Caller

REST

GET – fetch
anomaly
detection

data

PATH:

/v1/anomaly_detect?user_id=00001

HEADER:

"x-access-token: ${TOKEN}"

Get anomaly
detection

data rows for
a given

user_id value

Big Data
Platform

API

Digital
Solutions

REST

GET – fetch
anomaly
detection

data

PATH:

/v1/anomaly_detect?start_date=2019-11-
03&end_date=2019-11-03

HEADER:

"x-access-token: ${TOKEN}"

Get anomaly
detection

data rows for
a given date

range

Big Data
Platform

API

Digital
Solutions

REST

GET – fetch
anomaly
detection

data

PATH:

/v1/anomaly_detect?user_id=00001&start_da
te=2019-11-03&end_date=2019-11-03

HEADER:

"x-access-token: ${TOKEN}"

Get anomaly
detection

data rows for
a given

user_id value
and given a
date range

Big Data
Platform

API

Digital
Solutions

3.2.5.3 Test cases and Validation

The Big Data Platform inbound API is used to send JSON files with IoT sensor data
to the SHAPES Big Data Platform.

Table 30 - Case-INB-01. This test case checks if a new user can be registered to the inbound API successfully.

I/F
Test
case

Method Call Result

Big Data
Platform
Inbound

INB-
01

POST
curl -X POST --header 'content-type: application/json' -d

'{"username": "user123", "password": "3"}'
$BASE_URL/v1/signup

Pass/Fail

Test parameters:

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

35

{

 "username": "new_user123",

 "password": "new_pass123"

}

Response JSON in case of test success:

{

 "ok": 1,

 "new_id": "new_user_id_XYZ"

}

Table 31 - Case-INB-02. This test case checks if a new user can be logged in to the inbound API successfully.

I/F
Test
case

Method Call Result

Big Data
Platform
Inbound

INB-
02

POST
curl -X POST --header 'content-type: application/json' -d

'{"username": "user123", "password": "3"}'
$BASE_URL/v1/signin

Pass/Fail

Test parameters (the same as in Case-INB-01):

{

 "username": "new_user123",

 "password": "new_pass123"

}

Response JSON in case of test success:

{

 "ok": 1,

 "token":

"eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpZCI6IjV6M2JrIiwiaWF0IjoxNjMxNTM0M

DYxLCJleHAiOjE2MzE2MjA0NjF9.AqO_PsFxTxElzxluFOK4EjVpVfhfFqtHwrk2yYEq1uI"

}

Table 32 - Case-INB-03. This test case checks if a FHIR data JSON can be uploaded to the inbound API
successfully.

I/F
Test
case

Method Call Result

Big Data
Platform
Inbound

INB-
03

POST

curl -i -X POST -H "x-access-token: $TOKEN" -H "Content-
Type: application/json" -d <FHIR json data>

$BASE_URL/v1/post_data

Pass/Fail

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

36

Test parameters are passed through HTTP Header & Form data fields (the TOKEN to
be the same as returned in Case-INB-02):

-H “x-access-token: <$TOKEN>”

-H “Content-Type: application/json”

-d <FHIR json data>

Response JSON in case of test success:

{

 "ok": 1

}

As for the Big Data Platform outbound API, it is used to convey analysis data from
the SHAPES Big Data Platform into Digital Solutions system.

Table 33 - Case-OUT-01. This test case checks if sleep activity data can be fetched from the outbound API
successfully.

I/F
Test
case

Method Call Result

Big Data Platform
Outbound

OUT-01 GET
curl -H "x-access-token: ${TOKEN}"

"$BASE_URL/v1/sleep_act"
Pass/Fail

Test parameter in this case is the authentication TOKEN passed in the HTTP header:

-H "x-access-token: ${TOKEN}"

Response JSON example in case of test success:

{

 "ok": 1,

 "res": { "Items": [{"user_id": "00001",

 "date": "2019-10-27",

 "start_time": "2019-10-27 00:38:00.000",

 "latency":3,

 "in_bed":531,

 "sleep_efficiency":0.9698681732580039,

 "n_int_awake":3,

 "n_int_getup":0,

 "int_duration":13,

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

37

 "sqi":0.8999999999999999,

 "sleep_disconnect":0

 }

]

 }

}

Table 34 - Case-OUT-02. This test case checks if sleep activity data can be fetched from the outbound API
successfully for a given user_id.

I/F
Test
case

Method Call Result

Big Data
Platform

Outbound

OUT-
02

GET
curl -H "x-access-token: ${TOKEN}"

"$BASE_URL/v1/sleep_act?user_id=00077"
Pass/Fail

Test parameters in this case are the authentication TOKEN passed in the HTTP
header and a user_id value passed in the URL:

-H "x-access-token: ${TOKEN}"

?user_id=00077

Response JSON example in case of test success:

{

 "ok": 1,

 "res": { "Items": [{"user_id": "00077",

 "date": "2019-12-07",

 "start_time": "2019-12-07 01:31:00.000",

 "latency":3,

 "in_bed":431,

 "sleep_efficiency":0.67986732580039,

 "n_int_awake":2,

 "n_int_getup":0,

 "int_duration":12,

 "sqi":0.733325329,

 "sleep_disconnect":0

 }

]

 }

}

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

38

Table 35 - Case-OUT-03. This test case checks if sleep activity data can be fetched from the outbound API
successfully for a given a date range.

I/F
Test
case

Method Call Result

Big Data
Platform

Outbound

OUT-
03

GET
curl -H "x-access-token: ${TOKEN}"

"$BASE_URL/v1/sleep_act?start_date=2019-10-
28&end_date=2019-10-28"

Pass/Fail

Test parameters in this case are authentication the TOKEN passed in the HTTP
header and the date range values passed in the URL:

-H "x-access-token: ${TOKEN}"

?start_date=2019-10-28&end_date=2019-10-28

Response JSON example in case of test success:

{

 "ok": 1,

 "res": { "Items": [{"user_id": "00001",

 "date": "2019-10-28",

 "start_time": "2019-10-28 00:17:00.000",

 "latency":3,

 "in_bed":641,

 "sleep_efficiency":0.7986732580039,

 "n_int_awake":3,

 "n_int_getup":0,

 "int_duration":15,

 "sqi":0.911235329,

 "sleep_disconnect":0

 }

]

 }

}

Table 36 - Case-OUT-04. This test case checks if sleep activity data can be fetched from the outbound API
successfully for a given user_id and a date range.

I/F
Test
case

Method Call Result

Big Data
Platform

Outbound

OUT-
04

GET
curl -H "x-access-token: ${TOKEN}"

"$BASE_URL/v1/sleep_act?user_id=00077&start_date=2019-10-
28&end_date=2019-10-28"

Pass/Fail

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

39

Test parameters in this case are the authentication TOKEN passed in the HTTP
header and the user_id and the date range values passed in the URL:

-H "x-access-token: ${TOKEN}"

?user_id=00077&start_date=2019-10-28&end_date=2019-10-28

Response JSON example in case of test success:

{

 "ok": 1,

 "res": { "Items": [{"user_id": "00077",

 "date": "2019-10-28",

 "start_time": "2019-10-28 00:09:12.000",

 "latency":1,

 "in_bed":662,

 "sleep_efficiency":0.8621732580039,

 "n_int_awake":2,

 "n_int_getup":0,

 "int_duration":7,

 "sqi":0.9721135329,

 "sleep_disconnect":0

 }

]

 }

}

Table 37 - Case-OUT-05. This test case checks if physical activity data can be fetched from the outbound API
successfully.

I/F
Test
case

Method Call Result

Big Data Platform
Outbound

OUT-05 GET
curl -H "x-access-token: ${TOKEN}"

"$BASE_URL/v1/phys_act"
Pass/Fail

Test parameter in this case is the authentication TOKEN passed in the HTTP header:

-H "x-access-token: ${TOKEN}"

Response JSON example in case of test success:

{

 "ok": 1,

 "res": { "Items": [{"user_id": "00001",

 "date": "2019-12-07",

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

40

 "steps":2839,

 "sedentary":813,

 "active":109,

 "adl":83,

 "intermediate":0,

 "exercise":26,

 "light_exercise":17,

 "moderate_exercise":8,

 "intense_exercise":0,

 "rest_exercise":1

 }

]

 }

}

Table 38 - Case-OUT-06. This test case checks if physical activity data can be fetched from the outbound API
successfully for a given user_id.

I/F
Test
case

Method Call Result

Big Data
Platform

Outbound

OUT-
06

GET
curl -H "x-access-token: ${TOKEN}"

"$BASE_URL/v1/phys_act?user_id=00077"
Pass/Fail

Test parameters in this case are the authentication TOKEN passed in the HTTP
header and a user_id value passed in the URL:

-H "x-access-token: ${TOKEN}"

?user_id=00077

Response JSON example in case of test success:

{

 "ok": 1,

 "res": { "Items": [{"user_id": "00077",

 "date": "2019-12-07",

 "steps":1467,

 "sedentary":213,

 "active":124,

 "adl":88,

 "intermediate":0,

 "exercise":21,

 "light_exercise":19,

 "moderate_exercise":8,

 "intense_exercise":0,

 "rest_exercise":1

 }

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

41

]

 }

}

Table 39 - Case-OUT-07. This test case checks if physical activity data can be fetched from the outbound API
successfully for given a date range.

I/F
Test
case

Method Call Result

Big Data
Platform

Outbound

OUT-
07

GET
curl -H "x-access-token: ${TOKEN}"

"$BASE_URL/v1/phys_act?start_date=2019-10-
28&end_date=2019-10-28"

Pass/Fail

Test parameters in this case are the authentication TOKEN passed in the HTTP
header and the date range values passed in the URL:

-H "x-access-token: ${TOKEN}"

?start_date=2019-10-28&end_date=2019-10-28

Response JSON example in case of test success:

{

 "ok": 1,

 "res": { "Items": [{"user_id": "00001",

 "date": "2019-10-28",

 "steps":2386,

 "sedentary":193,

 "active":287,

 "adl":67,

 "intermediate":0,

 "exercise":34,

 "light_exercise":14,

 "moderate_exercise":8,

 "intense_exercise":0,

 "rest_exercise":1

 }

]

 }

}

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

42

Table 40 - Case-OUT-08. This test case checks if physical activity data can be fetched from the outbound API
successfully for a given user_id and a date range.

I/F
Test
case

Method Call Result

Big Data
Platform

Outbound

OUT-
08

GET
curl -H "x-access-token: ${TOKEN}"

"$BASE_URL/v1/phys_act?user_id=00077&start_date=2019-10-
28&end_date=2019-10-28"

Pass/Fail

Test parameters in this case are the authentication TOKEN passed in the HTTP
header and a user_id and the date range values passed in the URL:

-H "x-access-token: ${TOKEN}"

?user_id=00077&start_date=2019-10-28&end_date=2019-10-28

Response JSON example in case of test success:

{

 "ok": 1,

 "res": { "Items": [{"user_id": "00077",

 "date": "2019-10-28",

 "steps":2386,

 "sedentary":193,

 "active":287,

 "adl":67,

 "intermediate":0,

 "exercise":34,

 "light_exercise":14,

 "moderate_exercise":8,

 "intense_exercise":0,

 "rest_exercise":1

 }

]

 }

}

}

Table 41 - Case-OUT-09. This test case checks if vitals control can be fetched from the outbound API successfully.

I/F
Test
case

Method Call Result

Big Data Platform
Outbound

OUT-09 GET
curl -H "x-access-token: ${TOKEN}"

"$BASE_URL/v1/vitals_control"
Pass/Fail

Test parameter in this case is the authentication TOKEN passed in the HTTP header:

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

43

-H "x-access-token: ${TOKEN}"

Response JSON example in case of test success:

{

 "ok": 1,

 "res": { "Items": [{"user_id":"00001",

 "timestamp":1622531451000,

 "bg":87,

 "wr_lcl":68.24,

 "wr_ucl":160.05,

 "lcl":45.29,

 "ucl":182.00,

 "status":"ic"

 },

 {"user_id":"00001",

 "timestamp":1622538612000,

 "bg":136,

 "wr_lcl":68.24,

 "wr_ucl":160.05,

 "lcl":45.29,

 "ucl":182.00,

 "status":"ic"

 }

]

 }

}

Table 42 - Case-OUT-10. This test case checks if vitals control data can be fetched from the outbound API
successfully for a given user_id.

I/F
Test
case

Method Call Result

Big Data
Platform

Outbound

OUT-
10

GET
curl -H "x-access-token: ${TOKEN}"

"$BASE_URL/v1/vitals_control?user_id=00077"
Pass/Fail

Test parameters in this case are the authentication TOKEN passed in the HTTP
header and a user_id value passed in the URL:

-H "x-access-token: ${TOKEN}"

?user_id=00077

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

44

Response JSON example in case of test success:

{

 "ok": 1,

 "res": { "Items": [{"user_id":"00077",

 "timestamp":1622531451000,

 "bg":87,

 "wr_lcl":68.24,

 "wr_ucl":160.05,

 "lcl":45.29,

 "ucl":182.00,

 "status":"ic"

 },

 {"user_id":"00077",

 "timestamp":1622538612000,

 "bg":136,

 "wr_lcl":68.24,

 "wr_ucl":160.05,

 "lcl":45.29,

 "ucl":182.00,

 "status":"ic"

 }

]

 }

}

Table 43 - Case-OUT-11. This test case checks if vitals control can be fetched from the outbound API successfully
for a given a date range.

I/F
Test
case

Method Call Result

Big Data
Platform

Outbound

OUT-
11

GET
curl -H "x-access-token: ${TOKEN}"

"$BASE_URL/v1/vitals_control?start_date=2021-06-
01&end_date=2021-06-01"

Pass/Fail

Test parameters in this case are the authentication TOKEN passed in the HTTP
header and the date range values passed in the URL:

-H "x-access-token: ${TOKEN}"

?start_date=2021-06-01&end_date=2021-06-01

Response JSON example in case of test success:

{

 "ok": 1,

 "res": { "Items": [{"user_id":"00001",

 "date":"2021-06-01",

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

45

 "timestamp":1622531451000,

 "bg":87,

 "wr_lcl":68.24,

 "wr_ucl":160.05,

 "lcl":45.29,

 "ucl":182.00,

 "status":"ic"

 },

 {"user_id":"00001",

 "date":"2021-06-01",

 "timestamp":1622538612000,

 "bg":136,

 "wr_lcl":68.24,

 "wr_ucl":160.05,

 "lcl":45.29,

 "ucl":182.00,

 "status":"ic"

 }

]

 }

}

Table 44 - Case-OUT-12. This test case checks if vitals control data can be fetched from the outbound API
successfully for a given user_id and a date range.

I/F
Test
case

Method Call Result

Big Data
Platform

Outbound

OUT-
12

GET
curl -H "x-access-token: ${TOKEN}"

"$BASE_URL/v1/vitals_control?user_id=00077&start_date=2021-
06-01&end_date=2021-06-01"

Pass/Fail

Test parameters in this case are the authentication TOKEN passed in the HTTP
header and a user_id and the date range values passed in the URL:

-H "x-access-token: ${TOKEN}"

?user_id=00077&start_date=2021-06-01&end_date=2021-06-01

Response JSON example in case of test success:

{

 "ok": 1,

 "res": { "Items": [{"user_id":"00077",

 "date":"2021-06-01",

 "timestamp":1622531451000,

 "bg":87,

 "wr_lcl":68.24,

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

46

 "wr_ucl":160.05,

 "lcl":45.29,

 "ucl":182.00,

 "status":"ic"

 },

 {"user_id":"00077",

 "date":"2021-06-01",

 "timestamp":1622538612000,

 "bg":136,

 "wr_lcl":68.24,

 "wr_ucl":160.05,

 "lcl":45.29,

 "ucl":182.00,

 "status":"ic"

 }

]

 }

}

Table 45 - Case-OUT-13. This test case checks if anomaly detection data can be fetched from the outbound API
successfully.

I/F
Test
case

Method Call Result

Big Data Platform
Outbound

OUT-
13

GET
curl -H "x-access-token: ${TOKEN}"
"$BASE_URL/v1/anomaly_detect"

Pass/Fail

Test parameter in this case is the authentication TOKEN passed in the HTTP header:

-H "x-access-token: ${TOKEN}"

Response JSON example in case of test success:

{

 "ok": 1,

 "res": {"Items": [{"user_id":"00001",

 "init":1572740580000,

 "end":1572771060000,

 "activity":"sleep",

 "anomaly":"no_anomaly"

 },

 {"user_id":"00001",

 "init":1572771060000,

 "end":1572777600000,

 "activity":"kitchen",

 "anomaly":"no_anomaly"

 }

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

47

]

 }

}

Table 46 - Case-OUT-14 This test case checks if anomaly detection data can be fetched from the outbound API
successfully for a given user_id.

I/F
Test
case

Method Call Result

Big Data
Platform

Outbound
OUT-14 GET

curl -H "x-access-token: ${TOKEN}"
"$BASE_URL/v1/anomaly_detect?user_id=00077"

Pass/Fail

Test parameters in this case are the authentication TOKEN passed in the HTTP
header and a user_id value passed in the URL:

-H "x-access-token: ${TOKEN}"

?user_id=00077

Response JSON example in case of test success:

{

 "ok": 1,

 "res": {"Items": [{"user_id":"00077",

 "init":1572740580000,

 "end":1572771060000,

 "activity":"sleep",

 "anomaly":"no_anomaly"

 },

 {"user_id":"00077",

 "init":1572771060000,

 "end":1572777600000,

 "activity":"kitchen",

 "anomaly":"no_anomaly"

 }

]

 }

}

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

48

Table 47 - Case-OUT-15. This test case checks if anomaly detection data can be fetched from the outbound API
successfully for a given a date range.

I/F
Test
case

Method Call Result

Big Data
Platform

Outbound
OUT-15 GET

curl -H "x-access-token: ${TOKEN}"
"$BASE_URL/v1/anomaly_detect?start_date=2019-11-
03&end_date=2019-11-03"

Pass/Fail

Test parameters in this case are the authentication TOKEN passed in the HTTP
header and the date range values passed in the URL:

-H "x-access-token: ${TOKEN}"

?start_date=2019-11-03&end_date=2019-11-03

Response JSON example in case of test success:

}

 "ok": 1,

 "res": {"Items": [{"user_id":"00001",

 "date":"2019-11-03",

 "init":1572740580000,

 "end":1572771060000,

 "activity":"sleep",

 "anomaly":"no_anomaly"

 },

 {"user_id":"00001",

 "date":"2019-11-03",

 "init":1572771060000,

 "end":1572777600000,

 "activity":"kitchen",

 "anomaly":"no_anomaly"

 }

]

 }

}

Table 48 - Case-OUT-16. This test case checks if anomaly detection data can be fetched from the outbound API
successfully for a given user_id and a date range.

I/F
Test
case

Method Call Result

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

49

Big Data
Platform

Outbound

OUT-
16

GET
curl -H "x-access-token: ${TOKEN}"
"$BASE_URL/v1/anomaly_detect?user_id=00077&start_date=2019-
11-03&end_date=2019-11-03"

Pass/Fail

Test parameters in this case are the authentication TOKEN passed in the HTTP
header and a user_id and the date range values passed in the URL:

-H "x-access-token: ${TOKEN}"

?user_id=00077&start_date=2019-11-03$end_date=2019-11-03

Response JSON example in case of test success:

{

 "ok": 1,

 "res": {"Items": [{"user_id":"00077",

 "date":"2019-11-03",

 "init":1572740580000,

 "end":1572771060000,

 "activity":"sleep",

 "anomaly":"no_anomaly"

 },

 {"user_id":"00077",

 "date":"2019-11-03",

 "init":1572771060000,

 "end":1572777600000,

 "activity":"kitchen",

 "anomaly":"no_anomaly"

 }

]

 }

}

3.2.6 ASAPA Authentication and Authorisation (HMU)

The ASAPA component is developed to offer a Single-Sign-On (SSO) solution for the
SHAPES eco-system. It consists of a database and a cloud-native application that
offers a REST API interface for the authentication of SHAPES users. It provides users
with a PASETO (Platform-Agnostic Security Tokens) token that is globally accepted in
the SHAPES eco-system for authentication. The PASETO token expires 10 minutes
after issue. The token can be refreshed within the time-frame before expiration.

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

50

3.2.6.1 Overview of deployment options

Docker images are available for the deployment of the ASAPA component at a
containerised environment (e.g. the pilot’s premises). The ASAPA component has
been deployed and tested locally, on a Kubernetes cluster through a Continuous
Integration/Continuous Deployment (CI/CD) pipeline. The ASAPA API can be
accessed through the following URL:

https://kubernetes.pasiphae.eu/shapes/asapa

The swagger definition of the API, for security reasons, is not publicly available.
Nevertheless, it is provided, upon request, to the relevant partners. Access on the
ASAPA RESTful API can be achieved by providing an API-key in every request, by
adding the “X-Shapes-Key” header, and the API-key value, and the authentication
token in the request’s headers (see example below).

{

“X-Shapes-Key": "key",

"X-Pasiphae-Auth": "token"

}

3.2.6.2 Interfaces offered

Table 49 – ASAPA’s interfaces.

I/F Feature Endpoint/Queue Description

Produce
r/

Resourc
e

Consume
r/ Caller

REST
POST –
register

user
/auth/register

It registers a
new user to

SHAPES
ASAPA

Any other
SHAPES

core
compone

nt

REST
POST –

Login user
/auth/login

Logins an
existing user

ASAPA

Any other
SHAPES

core
compone

nt

REST GET
/realms/<realm_id>/organizations/<org_id>/use

rs/<user_email>

Get data of a
user of a
specific

organization

ASAPA SymbIoTe

https://kubernetes.pasiphae.eu/shapes/asapa

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

51

I/F Feature Endpoint/Queue Description

Produce
r/

Resourc
e

Consume
r/ Caller

REST GET /users/<user_id>
Get data of a
user with his

ID
ASAPA

Any other
SHAPES

core
compone

nt

REST GET /users/me

Get data of
current

logged in
user

ASAPA

Any other
SHAPES

core
compone

nt

3.2.6.3 Test cases and Validation

The health status of ASAPA can be checked at the following endpoint:
https://kubernetes.pasiphae.eu/shapes/asapa/health with a GET request. The above
endpoint can be used to test the full functionality of the ASAPA component.

Table 50 - Interface asapaAPI-1. This interface is used for checking the health of ASAPA.

I/F Test case Method Call Result

asapaAPI-1 asapaAPI-1.A POST /shapes/asapa/health Pass/Fail

asapaAPI-1. A. This test case confirms the correct functionality of ASAPA

Response is given in JSON:

{

 'The ASAPA service is up and running!'

}

The basic use case scenario is the registration of a SHAPES user.

Table 51 - Interface asapaAPI-2. This interface is used to register a user to ASAPA.

I/F Test case Method Call Result

asapaAPI-
2

asapaAPI-
2.A

POST https://kubernetes.pasiphae.eu/shapes/asapa/auth/register Pass/Fail

asapaAPI-2.A. This test case checks if a user is registered to ASAPA successfully.
Parameters required:

https://kubernetes.pasiphae.eu/shapes/asapa/health
https://kubernetes.pasiphae.eu/shapes/asapa/auth/register

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

52

{

 "email": "string",

 "password": "string"

}

Additional data can be included in the request, in the same format as shown below.
(e.g. “Last_name”: “smith”).

{

“email": “example@gmail.com",

"password": “example”

}

Response is given in JSON:

{

 "code": "string",

 "count": "string",

 "error": "string",

 "items": list ["string"],

 "message": "string",

 "more": "string",

 "page": "string",

 "page_size": "string",

 "total": "string"

}

For example:

{
 "code": 200,
 "count": 1,
 "error": "",
 "items": [
 {
 "_id": {
 "$oid": "objectID"
 },
 "active": true,
 "created_at": {
 "$date": 1631546317266
 },
 "email": "user_email",
 "roles": []
 }
],
 "message": "REGISTER_USER_SUCCESS",

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

53

 "more": "",
 "page": 1,
 "page_size": 20,
 "total": 0
}

3.2.7 Front-end App (EDGE)

The SHAPES Front-end App was developed to provide a unique access point to the
SHAPES Digital Solutions running on smartphones or tablets (devices), easing
authentication, access and navigation even to users with low technological skills that
could exhibit difficulty interacting with novel technologies.

Overall, the SHAPES Front-end App aims:

• To represent the main entry point to the SHAPES Digital Solutions running on
smartphones or tablets.

• To provide a mechanism for the single authentication of the user in the SHAPES
Platform (as opposed to requiring the user to authenticate when accessing each
Digital Solution).

• To deliver a single point of access for the various SHAPES Digital Solutions rele-
vant for specific pilots and deployments. Where possible, a simplified access (sin-
gle-click) to specific Digital Solutions features is envisaged, to minimise the users’
challenges navigating the Digital Solutions.

The SHAPES Front-end App is further described in [1].

3.2.7.1 Overview of deployment options

The SHAPES Front-end App was developed for Android devices, and thus is
distributed in the form of an Android Package (APK).

The source-code is open and available for SHAPES partners at the SHAPES GitHub,
specifically: https://github.com/SHAPES-H2020/Front-end-App.

At the moment, the App has been tested with Android Studio 2020.3.1 for Windows
64.bit. All necessary environment and configuration files are setup once the project is
opened in Android Studio.

Currently, the “Front-end App” project in Android Studio is setup to generate the
following Apps:

• Front-end App for Pilot 3 led by MOIC

• Front-end App for Pilot 3 led CH

• Front-end App for demonstrations. This App is used in the test cases.

• eCare demonstration App. This App is used in the test cases.

https://github.com/SHAPES-H2020/Front-end-App

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

54

It is required that the environment where the App is running is able to access the
SHAPES ASAPA system for authentication purposes. The ASAPA URL can be set in
the “settings.xml” file as follows:

<string name="API_BASE_URL" translatable="false">

https://kubernetes.pasiphae.eu/shapes/asapa/</string>

<string name="TEST_API_BASE_URL" translatable="false">

https://kubernetes.pasiphae.eu/shapes/asapa/</string>

The recommended ways to run and test the SHAPES Front-end App are the following:

• Install to a USB connected mobile phone in developer mode running Android
OS above version;

• Install to an android emulator;

• The Android OS version must be above 6.0, but version 10 or 11 is
recommended.

In this document, the steps to test the App using an android emulator are described.

The installation of an Android emulator can be done directly via Android Studio using
the “AVD Manager”.

Figure 1- Android Studio AVD Manager

In order to efficiently run the required environment (Android Studio and emulator) a
computer with a modern processor and more than 8GB RAM is recommended.
Network connection to the ASAPA is also required.

3.2.7.2 Interfaces offered

The following interfaces, described in [1], are tested in this document:

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

55

• I/F #1 (Interface between the SHAPES Front-end App and the ASAPA) that is
used to authenticate the user in the SHAPES Platform and SHAPES Digital Solu-
tions. The interface uses ASAPA REST API.

• I/F #3 (Interface between the SHAPES Front-end App and the SHAPES Digital
Solutions) that is used by the SHAPES Front-end App to launch a SHAPES Digital
Solution, as selected by the user.

I/F #2 (Interface between the SHAPES Front-end App and the SHAPES Biometrics
Authentication) cannot be tested yet since it depends on biometric authentication
services running on the SHAPES Gateway that are not yet available.

3.2.7.3 Test cases and Validation

Integration testing is not applicable to the Front-end App. Only functional testing can
be applied. Validations tests that ensure the functionality of the app are described
below.

In order to run the test cases, a set of initial conditions is required:

1. Android Studio is running and the “Front-end App” project is open.
2. The Android emulator is running.
3. Android Studio is connected to the Android emulator.

Case-App-01: This test case verifies if the App is successfully installed and started in
the mobile phone.

Specific Requirements:

• The App has not yet installed

Steps:

1. Select “run app.pt003-moic-demo”

Result

• The build process starts and concludes successfully

• The App is installed in the emulator and is started in the login screen.

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

56

Figure 2 - SHAPES Front-end App Login Screen

Case-App-02: This test case verifies if the App successfully authenticates in ASAPA.
This case tests I/F #1.

Specific Requirements:

• The App is open in the login screen

Steps:

1. Enter valid login credentials (username and password)
2. Press “Login”

Result

• The App provides a welcome message (i.e., welcome screen)

• The buttons “Enter” and “Logout” appears

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

57

Figure 3 - Successful login in the SHAPES Front-end App

Case-App-02.1: This test case verifies that wrong credentials will not allow entering
the App and will generate an error. This case tests I/F #1 and is a special case of
Case-App-02.

Specific Requirements:

• The App is open in the login screen

Steps:

1. Enter invalid login credentials (wrong username and/or password)
2. Press “Login”

Result

• The App shows an error message.

• The button “Login” remains active.

Case-App-03: This test case verifies the App navigation functions: enter main screen
and go back to login screen

Specific Requirements:

• The App has a valid user and is open in the welcome screen

Steps:

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

58

1. Click on “Enter”

Result

• The App opens the main screen

Steps-2:

2. Click on the back button (bottom part of the screen)

Result-2:

• The App returns to the welcome screen

Figure 4 - SHAPES Front-end App Main Screen

Case-App-04: This test case verifies the Front-end App navigation functions in
opening the eCare App (demo version). It is noted that this case demonstrates the
generic mechanism implemented in the Front-end App to open another SHAPES App.
This case tests I/F #3.

Specific Requirements:

• The eCare demo App must be installed (select “run ecaredemo”)

• The Front-end App is open in the main screen.

Steps:

1. Click on “Weight”

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

59

Result

• The eCare demo App opens indicating the username and the destination

screen (FRAGMENT_MEASURE_WEIGHT).

Steps:

2. Click on back to return to the Front-end App
3. Click on “Heart Rate”

Result

• The eCare demo App opens indicating the username and the destination

screen (FRAGMENT_MEASURE_HEART_RATE).

Case-App-05: This test case verifies the Front-end App in logging out the user.

Specific Requirements:

• The Front-end App is open in the welcome screen.

• The App has a logged user.

Steps:

1. Click on “Logout”

Result

• The user is logged out. The Front-end App shows the “Login” button. The user

cannot login unless it authenticates again in ASAPA (see Case-App-02)

3.2.8 Marketplace (HMU)

The SHAPES marketplace allows SHAPES users and third parties to purchase and
promote SHAPES services/solutions and products. It consists of three main parts: the
frontend, the backend and the marketplace database. The frontend enables SHAPES
users to create, list, or purchase SHAPES products, solutions, and services. It
completes the business logic for the whole project, through web-based user interface.
The marketplace backend utilizes the ASAPA API to authenticate SHAPES users and
allow them to use the marketplace. The marketplace contains information about
products/services, orders, users, files (e.g., product images/videos, user avatars, etc.),
and documentation.

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

60

3.2.8.1 Overview of deployment options

The marketplace component is built following the cloud-native applications standards
and can be deployed as a cloud-service on any UNIX / Linux / Windows Server with
Docker or in any Kubernetes Cluster.

The minimum required hardware capabilities are: 4 CPUs, 4GB of RAM and minimum
50GB of storage space. These values are subject to change, depending on access
traffic, load, and storage requirements.

Software requirements are: An instance of Docker service in any operating system or
a Kubernetes Cluster. The Marketplace component is deployable with a “Docker-
compose” file or a “YAML” file respectively. The Docker images can be built with a
“Dockerfile” included on the source-code.

3.2.8.2 Interfaces Offered

The marketplace component does not provide any interfaces for integration with other
SHAPES core components.

3.2.8.3 Test cases and Validation

For testing, monitoring, and validating the SHAPES marketplace, we built one
endpoint for the marketplace backend that illustrates the health of the backend
component and tests the full functionality of the marketplace.

Table 52 - The endpoint of backend health.

Method Headers Endpoint Body (JSON) Query Params

GET --- /health --- ---

The expected successful response is:

{

 "code": "200",

 "message":"Health endpoint of marketplace back-end: SUCCESSFUL",

 "data": { "items": [] },

 "date": "2021-09-10T07:22:07.408Z"

}

and the expected failed response is:

{

 "code": "500",

 "message":"Health endpoint of marketplace back-end: FAILED",

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

61

 "data": { "items": [] },

 "date": "2021-09-10T07:22:07.408Z"

}

Functional testing can be additionally applied to the SHAPES Marketplace component
to validate its proper functioning.
For the testing, users can login to marketplace with SHAPES ASAPA credentials. The
Login Page is initially shown when accessing the Marketplace URL:
https://<deployment_url>/shapes/marketplace-frontend/login.

Figure 5 – SHAPES Marketplace Login page.

On the bottom right, there is an accessibility button that opens the accessibility menu
for people with special needs. This menu can be accessed at any time from all sub-
pages of the Marketplace.

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

62

After successful users’ login to the Marketplace, a preview of popular and latest
products is shown to the Home Page. Users can navigate to other pages from the
side-bar on the left.

Figure 6 – Marketplace’s homepage after successful login.

Navigating to Products page, users can see a list of products that already exist in
marketplace.

Figure 7 – Marketplace Product list

Additionally, they can add their own product for sale by clicking the top-right green
button “Add product”. This will open a form for adding details and images for the
product that users want to sell.

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

63

Figure 8 – Marketplace: create new product.

After adding a product for sale, it will stay in pending validation state until an
Administrator approves it. The added product is shown in product list.

Figure 9 – Marketplace Product List.

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

64

The top-left corner is visible to the product owners (creators) only. This showcases the
product state, for example orange shield is pending administrator validation. The
explanation for each state is visible by hovering the symbol in question.

By pressing the information button (i) on the bottom of a product card. The user can
navigate to product information page and if the user is an owner, he/she will be able
to edit the product as shown below.

Figure 10 – Marketplace’s product information page.

Scrolling down the product information page, users can see product videos (if any),
product documentation (this subcomponent is under construction), product licenses
(only in case users have purchased the product or users are owners of the product
listed – this subcomponent is under construction) and finally in this page users can
see the global product’s reviews. Additionally, users can add a Review for a product
(only in case product is purchased) (this subcomponent is still under construction).

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

65

Figure 11 – Marketplace: additional production information details.

For purchasing a product, the scenario is as follows:

1. Users select the products’ list or product information page and press “Add In Cart”
button as shown in figures bellow.

Figure 12 - Marketplace: product purchase scenario (step 1).

These buttons are only visible to products that user is not a “creator / owner”.
After adding a product to cart, the user can see the product in the cart (top-right corner)
or navigate to cart from sidebar on the left.

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

66

Figure 13 - Marketplace: product purchase scenario (step 2).

2. After navigating to the cart page, users can change/modify products in cart list or
clear cart and start over. Moreover, users can navigate to checkout page.

3. Navigating to checkout page will result in execution of a series of eligibility checks
for users, before granting eligibility to purchase products. Such eligibility checks are
“Complete profile”, “User Verified by Admin”, etc. Users are always informed for the
process of eligibility with messages on the checkout page.

Figure 14 - Marketplace: product purchase scenario (step 3).

In this example users are prompted to complete the basic information on their profile.
Users can navigate to profile, by using the blue button bellow the message, either by
using the sidebar on the left.

4. By navigating to the Profile page, users can see various details such as contact
details, profile details, billing details, products purchased, profile picture and access

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

67

roles / resources. By default, every user of ASAPA is granted the CUSTOMER role
and only one ADMIN User exists after the initialization of the marketplace component.
In the figure below, users can see all information mentioned above and status
concerning any information. In this figure we can see “warning” triangles on the left of
incomplete profile details. Adding the missing details will result in a pending “Verify
Status” state, as shown in middle of Profile Details with a shield icon and check marks
on top of every completed detail card. The tooltip of each icon and symbol explanation
is triggered on hover of the icon/symbol.

Figure 15 – Before filling profile details.

Figure 16 - After filling profile details.

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

68

5. After an administrator approves profile details, users will be able to purchase
products in the marketplace. The “Verified” Status is indicated in user’s profile as:

Figure 17 – Verify Status

6. Users can then navigate to checkout page, one more time and after verification,
they will be able to see the credit card form as shown in the figure below. The users
will be able to add their credit card data which will be automatically validated and
securely sent to “Stripe” (external payment service) backend.

Figure 18 – Marketplace checkout page.

7. Finally, after the successful payment, users are redirected to the home page.
Additionally, users can see the purchased products in the product list, the profile page
and the home page (if product is popular or latest) as figures bellow:

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

69

Figure 19 – SHAPES Marketplace homepage after successful registration of a new product.

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

70

4 Results and Conclusions

This deliverable summarises and details the work performed in WP4 until M24. Alt-
hough originally spinning of our Task 4.8, it has been extended with contributions also
from other tasks in WP4 thus to provide a comprehensive view of the current state of
the implementation and integration of the SHAPES Technological Platform, its testing
and deployment, demonstrating its reediness for integration with Digital Solutions in
cooperation with WP5 to get the whole SHAPES framework ready for deployment and
application in field trials under WP6.

The complete list of contribution WP4 tasks includes:

• Task 4.3 “Implementation of Mediation Framework & Interoperability Services”

• Task 4.4 “Implementation & Deployment of Secure Cloud & Big Data Platform”

• Task 4.5 “Human Interaction & Visual Mapping”

• Task 4.6 “SHAPES Authentication, Security & Privacy Assurance”

• Task 4.7 “SHAPES Gateway Reference Implementation”

• Task 4.8 “Integration and Testing of SHAPES TP”

This report provides a detailed description of the integration and testing approach used
to integrate the SHAPES core components into a working SHAPES TP prototype. It
describes the integration framework used, provides information regarding the deploy-
ment requirements and options for each of the SHAPES core components and finally
describes the test cases for the integration or functional testing to validate their proper
functioning. Additionally, digital solutions such as from VICOM, UCLM, SciFy, Omnitor
and MedSyn have provided a description pertaining to the deployment of their solu-
tions and the test cases they have provided, to test their interfaces where applicable.

This deliverable will be further updated in month 30 or in May 2022 with the new
version (D4.4 Integration Testing Results, preliminary version), focusing on the
integration outcomes of WP4 in the upcoming six months, as the various modules of
the SHAPES TP (both core components and digital solutions) are deployed and tested
in different pilot sites across Europe, according to the demo scenarios of each one of
them.

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

71

5 Ethical Requirements Check
The focus of this compliance check is on the ethical requirements defined in D8.4 and
having impact on the SHAPES solution (technology and related digital services, user
processes and support, governance-, business- and ecosystem models).

Table 53 – Compliance check on ethical requirements.

Ethical issue (corresponding subsec-

tion of D8.4 in brackets) 

How it has been taken into account

in this deliverable (if relevant) 

Fundamental Rights (3.1)
N/A (no private identifiable data ex-

changed or processed by SHAPES-TP)

Biomedical Ethics and Ethics of Care (3.2)
N/A (no private identifiable data ex-

changed or processed by SHAPES-TP)

CRPD and supported decision-making (3.3)
N/A (Decision Support System is not pro-

vided by SHAPES-TP)

Capabilities approach (3.4)  N/A

Sustainable Development and CSR (4.1)
N/A to SHAPES-TP

(covered by Digital Solutions)

Customer logic approach (4.2)
SHAPES-TP follows service approach
adopted by Digital Solutions and com-

plies with their CLA strategy

Artificial intelligence (4.3)

Analytics Engine is the only one employ-
ing AI technologies. It is fully user agnos-

tic, privacy preserving by dealing with
non-identifiable data, excluding any per-
sonal information.Relevant for the data
analytics solutions. Please see section

3.2.5 and Appendix 1.

Digital transformation (4.4)
N/A (SHAPES-TP does not provide ser-

vices, merely facilitates interoperable
data exchange among service platforms)

Privacy and data protection (5)

N/A (no private identifiable data ex-
changed or processed by SHAPES-TP,
irrespective of this encrypted data ex-

change with dedicated authentication is
applied to core components, while au-

thentication of access to user data is gov-
erned by Digital Solutions)

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

72

Cyber security and resilience (6)

SHAPES-TP employs a number of cyber
security protections, from secure access

from external Digital Solutions using
IP/MAC access control, using encrypted
communication interfaces and most im-
portantly making sure that NO private
identifiable user data is exchanged or

processed with or by core components.

Digital inclusion (7.1)  N/A

The moral division of labour (7.2)  N/A

Care givers and welfare technology (7.3)  N/A

Movement of caregivers across Europe (7.4)  N/A

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

73

6 References

[1] SHAPES Consortium (2020). D4.1 – SHAPES Technological Platform (TP) Re-

quirements and Architecture, May 2021.

[2] SHAPES Consortium (2020). D5.3 – SHAPES Digital Solutions V2 – October

2021.

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

74

Annex 1 Digital Solutions – Integration Efforts

1.1 NOT!FY Digital Solution (OMN)

Omnitor NOTiFY is a cloud-based platform currently used to make citizens aware of
incoming Total Conversation calls. Omnitor has developed two different versions of
NOTiFY, the NOTiFY Smart plug and NOTiFY v1. NOTiFY smart plug consist of a
built-in relay that can remotely be switched on/off and offers energy monitoring
capability. NOTiFY V1 consists of four exposed relays that external alerting devices
can be connected to.

1.1.1 Overview of deployment options

The server is temporarily deployed at AWS (Amazon Web Service). This has been
developed to offer a set of Rest API services to cover the needs for Big Data
Companies to create an algorithm and analyse data.

The inbound REST API for the server has been implemented using HTTP POST and
getting the values from the NOT!FY Smart plug while the requesting data from the
server could either be HTTP POST or GET, however, POST is recommended. The
temporary server offers a set of Rest API.

This is a temporary solution and thus no documentation has been created.

1.1.2 Interfaces offered

There are two interfaces offered, the first one is the “Inbound Data from Smart plug”
which is only used for the Smart plugs to upload data.

The second one is “request data from the server”, this is used mainly but not
exclusively by the Big Data Companies to gather the needed data, any partner that
needs to access the data could use the same Rest API.

Rest API specifications are presented below:

The authentication is not presented here and could be requested from Omnitor.

Inbound Data from Smart Plug

The inbound data is the data that the smart plug is POSTING to the server every 30 –
31 seconds.

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

75

Table 54 – Notify interfaces.

Table 55 – Notify: Request data from the server.

I/F Feature Endpoint/Queue Description
Producer/
Resource

Consumer/
Caller

REST POST

POST /default/uploadNotifyData
HTTP/1.1

Authorization: $PASSWORD

Host: 9d7upn31kd.execute-api.eu-
north-1.amazonaws.com

Content-Type: application/json

Content-length: varies, depending
on data

HTTP data:
{ "startTime": "YYYY-MM-DD

hh:mm:ss", "endTime": "YYYY-MM-
DD hh:mm:ss" }

Accessing the
uploaded data

between the time
intervals.

Omnitor
API

Big Data Platform
or any other

SHAPES partner.

I/F Feature Endpoint/Queue Description
Producer/
Resource

Consumer/
Caller

REST POST

POST /default/uploadNotifyData
HTTP/1.1

Host: 9d7upn31kd.execute-
api.eu-north-1.amazonaws.com

Authorization: $PASSWORD

Content-Type: application/json

Content-length: varies,
depending on data

HTTP data:
{ "boxid": "unique to the device",

"current": AB.XYZ,
"voltage": AB.XYZ,
"power": AB.XYZ,

"temp": XY.Z }

Register the data from the
smart plug.

The registered data are:
Boxid, current, voltage,

power and device
temperature

Omnitor API
NOT!FY

Smart Plug

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

76

1.1.3 Test cases and Validation

Table 56 – OmnitorAPI test cases.

I/F
Test
case

Method Call Result

OmnitorAPI OUTPUT POST
https://27osqql772.execute-api.eu-north-
1.amazonaws.com/default/getNotifyData

OK/Unauthorized

Test parameters:

{

 "OmnitorToken":"string"

 "startTime":"Date"

 "endTime":"Date"

}

Response is given in JSON:

{

 "id": "Numbers",

 "boxid": "String",

 "current": "Numbers",

 "voltage": "Numbers"

 "power": "Numbers",

 "temp": "Numbers",

 "time": "Date"

}

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

77

1.2 FACECOG Tool to Support User Authentication and for People
Identification at a Distance (VICOM)

FACECOG (Face Recognition Solution for Heterogeneous IoT Platforms) API version
1.0 is a software module from Vicomtech’s Viulib library (http://www.viulib.org/),
designed to analyse facial identities in the contexts of user verification and person
identification in heterogeneous IoT platforms.

It can support the user authentication process based on user/password, to make it
more user-friendly, but also for the recognition of potential users at a distance (to ask
for attention, etc).

FACECOG has been designed to overcome the problem of effectively deploying face
recognition algorithms in the high variety of edge devices and robots that could be part
of an IoT platform, like SHAPES. It includes an encryption mechanism to avoid
compromising the privacy of users, based on fully homomorphic encryption, which
allows maintaining the biometric data always encrypted, even during matching
operations.

Further details of FACECOG are included in [2].

1.2.1 Overview of deployment options

• FACECOG is deployed as a server in a local machine with sufficient computing
capability for Deep Neural Network (DNN) inference, and not in the cloud.
shows the workflow for the deployment of FACECOG. There might be several
kinds of devices and robots with whom users might interact. This setup consid-
ers an IoT edge gateway with sufficient computing capabilities to run the DNNs
of FACECOG to which the devices not suitable for this computation would send
recognition requests to process captured images and receive the correspond-
ing responses. FACECOG would be deployed on this gateway as containerized
services to handle multiple requests at once, but also on the devices and robots
with sufficient computing capabilities, to reduce the latency as much as possible
in all cases. To allow users to register in one device and be recognized by an-
other, the biometric data should be shared among the devices where FACE-
COG is deployed. Even if the network is private, the data would be encrypted,
and an administrator would manage the encryption keys to preserve privacy
with a secure element.

http://www.viulib.org/

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

78

\

 Figure 20 - Deployment diagram of FACECOG.

• The following Docker image needs to be installed (Vicomtech gives the access
to this image), like this:

$ docker pull quay.io/vicomtech/shapes:facecog_v1

• A batch file is also provided to run the FACECOG server in the local machine
(robot, gateway, PC), with the following code (Linux version):

#! /bin/bash

docker run --runtime nvidia --rm -p 8000:8000 facecog:latest

/facecog/run_services.py

argn=$#

echo "$# args"

if [$argn -le 3]; then

echo "Usage: $ $0 <pub_key_storage_path> <pri_key_storage_path>

<galois_key_storage_path> <relin_key_storage_path>"

else

dockername=facecog:latest

pub_key_storage_path=$1

pri_key_storage_path=$2

galois_key_storage_path=$3

relin_key_storage_path=$4

docker run --runtime=nvidia \

--rm \

--net=bridge \

-v $pub_key_storage_path:/key_storage/pub/ \

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

79

-v $pri_key_storage_path:/key_storage/pri/ \

-v $galois_key_storage_path:/key_storage/galois/ \

-v $relin_key_storage_path:/key_storage/relin/ \

-p 8000:8000 \

-e FACECOG_MODEL_PATH=/facecog/lib/viulib/ \

--entrypoint "/usr/bin/python3" \

--name=facecog-services \

$dockername \

run_services.py --reload --port 8000 --

pub_key_storage_path=/key_storage/pub/ --

pri_key_storage_path=/key_storage/pri/ --

galois_key_storage_path=/key_storage/galois/ --

relin_key_storage_path=/key_storage/relin/

fi

• As it can be seen in this code, the installer needs to include the paths where
the 4 keys used to handle the biometric data with security are stored. The keys
are the public key, the private key, the Galois key and the relinearization key.

• FACECOG can be deployed in machines with ARM64 architecture (like Jetson
TX2, Jetson Nano, Raspberry Pi 4, etc) and 2GB of RAM memory or more. We
recommend including in the machine a secure element, like a Trusted Platform
Module (TPM) or a Trusted Execution Environment (TEE) to store the private
key. TPMs are normally available in modern computer PC mother boards (since
2016). TEEs are available in Jetson Xavier NX, Jetson AGX Xavier series, and
Jetson TX2 series devices.

1.2.2 Interfaces offered

The system services include the needed tools and features to manage user
registration, identification, and search scenarios with the HTTP REST protocol.

The images sent to the services must be encoded using base64 encoding and
appended to the service arguments as a string or a list of strings depending on the
case.

The general flow of the identification and verification use cases is:

For user registration

2 Detect faces in the image (getAlignedFaces)
3 Evaluate if face position is correct (evaluateFacialPose)
4 If face pose is correct add user to database (addUserData)

For verification (once user was registered)

1. Detect faces in the image (getAlignedFaces)
2. Evaluate if face position is correct (evaluateFacialPose)
3. If face pose is correct check user id and image similarity (verifyUser)
4. Check if verification process detects spoofing attempts

For identification (once user was registered)

1. Detect faces in the image (getAlignedFaces)
2. Evaluate if face position is correct (evaluateFacialPose)

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

80

3. If face pose is correct check user in database (identifyUser)

User registration

You can add and remove users from the database. For the user registration, the user
image should be properly aligned to reduce the differences in a posterior identification
process.

Get aligned faces (getAlignedFaces)

The services include a function to detect faces in an image. It returns a list of detected
faces, cropped each to their bounding box and aligned to normalize the face pose.

The arguments to call this service:

{

“captured_image_b64": base64 image as string,

}

The response message:

{

 " face_imgs_base64": list of faces,

 " face_regions": list of rois,

 " landmarks”: list of landmarks,

 " poses" : list of head angles

}

Where aligned_faces_b64 is a list of face images encoded in base64, rois is a list of
image regions of the detected faces in the original image (in format [x, y, width,
height]), landmarks is a list of a set of facial feature landmarks for the detected faces
(one list of N landmarks for each detected image) and poses is a list of pose values
(Euler rotation angles) for each of the detected poses.

All the lists in the result message should have the same length, maintaining the same
order between lists (i.e., an element with index i in any list corresponds to the data for
the face with the same index i in the face_imgs_base64 image list).

Add user to database (addUserData)

Adds a user to the identification database. If the specified user id is already present in
the database, the call updates the user data for that id.

The arguments to call this service:

{

“user_id": user id as string,

“aligned_face_img_b64”: base64 image as string

}

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

81

Where user_id is the id value (as alphanumeric string) of the registered user and
aligned_face_img_b64 is aligned and cropped face image of the registered user.

This call has no response message.

Remove user from database (removeUserData)

Removes the user with the specified id from the database.

The arguments to call this service:

{

“user_id" : user id as string

}

Where user_id is the id of the user to be removed.

This call has not any response message.

Check registered data (getRegistrationInfo)

This service returns the list of ids included in the database.This service has no input
arguments.

The response message:

{

“users": list of user ids as strings

}

Where users is a list of user ids in the database.

Identification (identifyUser)

This service estimates the identity of the user using the aligned face image crop parsed
as an argument.

The arguments to call this service:

{

“aligned_face_img_b64": base64 image as string,

“ident_tresh”: identification threshold

}

Where aligned_face_img_b64 is the face image (cropped and aligned) and ident_tresh is the
similarity value threshold to be overtaken to be set as correct. 0.6 is a good reference value
for the threshold.

The response message:

{

“output": list of identification results [id, score]

}

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

82

Where output is a list of two values: id (with index 0) representing the estimated id of
the user, and score (with index 1) given the final similarity value.

In the case of no correct identification, the return message defines the is as Unknown
and the score the similarity value of the closest face in the database. This is an
example of a return message with no identification:

{

“output": [“Unknown”, 0.2]

}

User verification (verifyUser)

This service verifies that the parsed user image and the id correspond with the same
individual based on the information for that user in the registration database.

The arguments to call this service:

{

 "user_id”: user id as string,

 aligned_face_img_b64": base64 image as string,

 «verif_thresh”: verification threshold as float,

 «liveness_thresh": liveness threshold as float,

 “spoofing_thresh”: spoofing threshold as float

}

Where user_id is the expected id of the face image to be validated,
aligned_face_img_b64 is the face image (cropped and aligned), verif_thresh is the
verification threshold, liveness_thresh is the liveness threshold and spoofing_thresh is
the anti-spoofing threshold.

Good reference values for the thresholds in this call could be:

• verif_thresh = 0.6,

• liveness_thresh = 0.6,

• spoofing_thresh = 0.6

The response message:

{

“output": list of identification results for verification, liveness and

spoofing analysis.

}

output parameter includes the information about three different aspects of this analysis
(user verification, user liveness and spoofing attempt, in this order). In each case, it
includes a Boolean flag and a score value (from 0 to 1).

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

83

If the verification flag is True, the parsed user id matches with the user in the image.
If the liveness flag is True, the user image corresponds to a real person and not to an
image, and if spoofing is True, the system estimates that there is a spoofing attempt.

An example output message could be:

{

“output": [

 [True, 0.8], # User validation success with score 0.8

 [True, 1], # User liveness is positively validated with score 1

 [False, 0.1] # Spoofing attempt is discarded with score 0.

]

}

Other tools

Server status check (serverStatus)

This service can be used to check if FACECOG is correctly running on the server. It
has no input arguments and returns a message with a string showing the current
status.

The response message:

{

“status": FaceCog status string
}

The value of the status message could be " FACECOG initialized: True" or "FACECOG
initialized: False" depending on the status.

Evaluate facial pose (evaluateFacialPose)

To improve the user verification and identification processes, the user face should be
frontally looking at the camera. To help the user to get a correct pose for the
identification, the FACECOG services include an evaluation tool that determines the
actions to improve the face image capture.

This service uses the information provided by getAlignedFaces service and returns a
set of feedback strings to help the user to correct the head pose and location.

The arguments to call this service:

{

 "face_region ": face roi in the image,

 "landmarks": list of facial landmarks,

 "angles: " head angles,string",

 "ref_region": an image region where the user face must be located

}

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

84

The response message:

{

“feedback": Feedback message as a string

}

The values of the feedback message could be:

• "CORRECT"

• "LOOK STRAIGHT"

• "MOVE CLOSER"

• "MOVE BACKWARDS"

• "MOVE TO THE RIGHT"

• "MOVE TO THE LEFT"

• "MOVE DOWNWARDS"

• "MOVE UPWARDS"

1.2.3 Test cases and Validation

Viulib’s FACECOG module has been used in several projects where Vicomtech has
the role of face recognition technology provider, so the whole SDK is being
continuously tested in several environments.

In terms of Android technical implementation, the aforementioned functionality can be
achieved by using Android Intents and Content Providers.

1.3 Adilib Chatbot Building Platform (VICOM)

Adilib is a comprehensive software for the development of chatbots. Composed of
different technological modules, it allows the understanding of the text expressed by
the user, its contextualisation based on interaction and external information, and the
communication of responses in natural language, whether being static or dynamic.

Adilib is a general-purpose software, which allow to create and configure bot for
different domains by introducing and annotating user utterances and defining
interaction rules.

1.3.1 Overview of deployment options

• To install Adilib, it is necessary to have access to the Adilib-installer, which is a
docker compose configuration file. Once downloaded, it is recommended to
place the folder on a partition where there is enough free space.

• Adilib has been tested can be deployed in in Ubuntu 16, 18 and 20 LTS envi-
ronments, and it can be deployed in any machine with the specified OS and
hardware requirements.

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

85

• For SHAPES, Adilib is being served as a Software as a Service on an OVH
cloud, based in France.

Software requirements:

• To install Adilib you only need to have installed Docker and Docker-compose.
If deployed in a cloud/remote server, you need to have access to the balancer
(Apache/NGINX) in order to make Adilib generated Chatbots accessible from
outside the server.

Hardware requirements:

These are the basic requirements for a standard deployment with a load of 100 con-
current users:

• CPU: Intel(R) Xeon(R) CPU E5-2680 or higher. – IMPORTANT: The CPU must
have Advanced Vector Extension (AVX) for proper operation.

• RAM Memory: 16GB or more.

• Hard Disk: 50GB or more. The need will increase depending on the number of
trained models, data stored in Elastic Search etc.

1.3.2 Interfaces offered

Two interface-types are provided to use Adilib: web-based interfaces and WebSocket
based interfaces. Three main interfaces are available:

Web Interface for building Chatbots

The first interface is a web-based UI which can is used to configure, personalize, train
and deploy chatbots. It is intended to be used by technicians with knowledge on
chatbot building.

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

86

Figure 21 – Adilib’s web-based interface.

Figure 22 – Webchat widget.

The second interface is a Webchat Widget. It allows to easily add a widget in any
modern webpage that can communicate with a chatbot deployed in Adilib.

In addition, if a voice-layer URL is provided it automatically allows a spoken interaction
by displaying a microphone-recording button.

The Webchat Widget automatically connects to the WebSocket API of Adilib and
renders all the available response-types (images, text, cards, and buttons). In addition,
it is highly configurable so it can be adjusted to different use cases.

In order to include the Webchat Widget the following lines of code must be placed
inside the <HEAD></HEAD> tags in the main index.html file of the web page:

Then, the following item must be included in a <div> on the webpage to render the
widget:

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

87

With these steps, a widget will be rendered in the desired page, on the bottom right
corner, in a closed state.

WebSocket communication API

The WebSocket communication API is used to consume the chatbots that are built
within Adilib. Once a chatbot is built and trained, a WebSocket channel can be
created, this channel, deployed in a randomized URI is used to communicate the end
users with the chatbot.

The WebSocket communicates using JSON-formatted messages, the Input JSON
parameters are specified in the next figure:

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

88

The key to maintaining a conversation with the assistant is to keep the "dialogid"
through-out the interactions.

1. In the first interaction send an empty string ("dialogid": "")
2. Adilib will generate a unique identifier for the current dialog/session.
3. In the following calls, send this identifier in the field "dialogid".

To keep the WebSocket open, a simple system of calls must be implemented. Every
30 seconds (approximately), send the string "ping" to the WS. The WS will reply with
a "pong" on return, a message to be filtered.

The response given by Adilib is also given in JSON format and consists of different
sections, which may be of interest for integration with various systems and front-ends.

The NLU information structure has the following parameters:

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

89

The dialogue-state-json has the following parameters:

The message list consists of a list of messages of different datatypes, which all of them
have the following base structure:

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

90

• Type: defines the data type (text, image, …)

• Data: Interface that defines the required information to render the message

• Index: Index of the response, i.e., its position in the response

As an example, a plain-text response type JSON is depicted:

1.3.3 Test cases and Validation

Adilib has been used in several projects where Vicomtech has the role of
chatbot/assistant technology provider, so the whole SDK is being continuously tested
in several environments.

In addition, for the SHAPES use case, a Demo Chatbot has been built over the Adilib
deployed at https://adilib.shapes.vicomcloud.net . This demo bot has been used as a
guiding example of the Adilib Workshop and it simulates a Chatbot to gather post-
operation information from a user after a knee surgery.

Figure 23 – Demo chatbot.

This demonstrator encompasses a total of 22 intents, 4 entities, 15 memory attributes
and 48 interaction rules to build a Chatbot and test the correct integration of all the
components of Adilib.

Finally, this chatbot is deployed over a WS channel which is being used by the different
pilot-site integrators to test and validate the communication with Adilib.

1.4 At-home Rehabilitation System (UCLM)

UCLM digital solutions are a set of four hardware/software solutions devoted to be
tested on real environments with users under pilots “Smart Living Environment for

https://adilib.shapes.vicomcloud.net/

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

91

Healthy Ageing at Home”, “Improving In-Home and Community-based Care” and
“Physical Rehabilitation at Home”.

These solutions are:

• phyx.io A totem to support rehabilitation
• Activity monitor system: A smart-band devoted to monitor activity of users.
• Fall detection system: a sensor/smart-band combo oriented to detect falls of

users.

• Magic mirror component: an assistant service embedded in a mirror/totem
devoted to testing interactions with the user.

We would like to point out that UCLM in close connection with SAL is approaching the
design and implementation of these solutions under Agile methodology reducing the
risk associated to these type of experimental developments.

Up to date, every feature of all solutions have been designed and implemented
following user requirements (SAL) in each sprint. We are currently on Validation and
Exercises phase 3 and approaching to phase 4 of deployment in Controlled
environment according to Gantt defined for the project.

1.4.1 Overview of deployment options

Regarding integration with SHAPES core components, UCLM solutions were chosen
to not be integrated with SHAPES core components. Until security scheme is validated
and tested for the SHAPES platform, the personal data collected by UCLM digital
solutions will keep under end-user control and not external processing, store or
analysis will be performed. However, it is expected that a set of trials using fake data
will be used to facilitate the integration of UCLM digital solutions in a future when an
instance of SHAPES will be deployed compliant with GDPR and security
considerations.

1.4.2 Interfaces offered

UCLM digital solutions does not export any API for external services and/or requires
data coming from external sources. Only the Call service of the magic mirror requires
of Telegram servers.

1.4.3 Test cases and Validation

All the source code generated to test different solutions is under version control in
https://bitbucket.org/arco_group/prj.shapes/src/master/ repository. Currently this
repository is private, if you need access, please e-mail to Félix Jesús Villanueva
(felix.villanueva@uclm.es) to ask access detailing your role inside of SHAPE project
and your motivation for getting access to the source code.

https://bitbucket.org/arco_group/prj.shapes/src/master/
mailto:felix.villanueva@uclm.es

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

92

Phyx.io is a totem devoted to monitor rehabilitation exercises of users previously
programmed by the specialists. Each action/role identified in a sprint is validated by
the users (SAL) verbally, integrated in the developing and testing pipeline and
presented in the following sprint for verbal validation. The features identified till the
date according to each role and the test passed are summarized in the following
tables.

Currently those activities/roles are tested by 314 unit tests with 94% of coverage of
code developed.

Figure 24 – Legend used in test monitoring pipeline.

Figure 25 – Admin actions developed and tested.

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

93

Figure 26 – Manager actions developed and tested.

Figure 27 – Facility, totem and event actions developed and tested.

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

94

Figure 28 – End-user actions developed and tested.

Figure 29 – Trainer actions developed and tested.

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

95

Figure 30 – Routine and exercise action implemented and tested.

Phyx.io is django app containerized on Docker but there is no API exported to access
data collected by each totem. Currently is designed to run on end-user facilities. A
cloud version to manage several facilities is also implemented.

Next steps on Phyx.io testing program is trial of pilot deployment on the three
placements of pilots (SAL, CH and DYPE) to be evaluated by SHAPES users not
directly involved in Phyx.io developments and sprints. On these trials, users assuming
existent roles will be asked to do actions enumerated in previous tables to see if the
functionality and GUI is friendly enough or need to be improved. Any bug and/or
improve need detected will be included in next sprint as soon as it is detected. After
this trial phase the three pilots will be deployed for long-term evaluation and data
collection of end-user will be activated. All the partners involved in this pilots will be
provided with a link to the issue tracker enabled for Phyx.io in order to report any bug
found during pilot lifetime.

Fall detection system is composed by one sensor attached to the end-user and a
gateway module with the software which analyses raw data from the sensor. In the
gateway, a fall detection machine learning algorithm specifically designed for SHAPES
project is running to detect any fall. The performance and architecture has been
published and can be consulted in the following reference:

Jesus Fernandez-Bermejo Ruiz, Javier Dorado Chaparro, Cristina Bolanos Peño,
Henry A. Llumiguano Solanoa, Xavier del Toro García , Juan C. Lopez Lopez. A low-
cost and unobtrusive system for fall detection, 25th International Conference on
Knowledge-Based and Intelligent Information & Engineering Systems. 2021.

For testing purposes, a dataset was designed. 17 different individuals performed the
defined a set of exercises for calibration. One of the issues that were discussed was
whether it was appropriate to use a mat to collect the data, as its use may lead to
smoothing the acceleration peaks. Otherwise, the individual could perform the

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

96

activities in fear of injury, resulting in data that do not represent a real fall. Finally, the
decision was made to collect all data with a mat, as it was considered that it is
preferable to have data that approximate a real fall with a slightly smoothed peak. The
subjects who performed the activities to create the dataset were 4 females and 13
males, with an average age 30 ± 8.02 years, average height 174.18 ± 7.85 cm,
average weight 74.35 ± 9.71 kg. The labelled dataset is available on the website of
the ARCO research group: https://arcoresearch.com/2021/04/16/dataset-for-fall-
detection/.

Next steps on fall detection system testing is to perform trials on pilot emplacements
about reliability of the links of sensors with the gateway, the effective communication
distance and battery performance. Any bug and/or improve need detected will be
included in next sprint as soon as it is detected. After this trial phase the three pilots
will be deployed for long-term evaluation and data collection of end-user will be
activated. In the pilots, this service will focus on to avoid false positives and to improve
performance on real end-users. All the partners involved in these pilots will be provided
with a link to the issue tracker enabled for fall-detection service in order to report any
bug found during pilot lifetime.

The magic mirror component has two main services, a call service activated with a
RFID band and a VICOM component of orofacial rehabilitation. Functional testing of
both services has been performed successfully. The trials on pilot scenarios will be
devoted to analyse performance on face recognition (light conditions) and audio
quality under pilot deployment conditions. All the partners involved in these pilots will
be provided with a link to the issue tracker enabled for magic-mirror component in
order to report any bug found during pilot lifetime.

The digital solution developed for activity monitoring is based on a smart band
connected to a gateway which monitor daily activity. As we mention in fall detection
system, next steps in this service is also testing trials on pilot emplacements about
reliability of the links of smart band with the gateway, the effective communication
distance and battery performance. All the partners involved in these pilots will be
provided with a link to the issue tracker enabled for fall-detection service in order to
report any bug found during pilot lifetime.

Table 57 – A summary of the testing steps for the UCLM digital solution:

Digital solu-
tion

Test When Tool

phyx.io Deployment validation
First month of pilot de-

ployment
Hand-made testing list of

procedures

https://arcoresearch.com/2021/04/16/dataset-for-fall-detection/
https://arcoresearch.com/2021/04/16/dataset-for-fall-detection/

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

97

phyx.io Acceptance of end-user
Periodically on pilot dura-

tion
Questionary

phyx.io Acceptance of Trainer
Periodically on pilot dura-

tion
Questionary

phyx.io
Acceptance of manage-

ment staff
Periodically on pilot dura-

tion
Questionary

phyx.io Bug report Continuously Tracker tool

Activity monitor
system

Acceptance of end-us-
ers

First and final month of
pilot duration

Questionary

Activity monitor
system

Bug report Continuously Tracker tool

Fall detection
system

Acceptance of end-us-
ers

First and final month of
pilot duration

Questionary

Fall detection
system

Bug report Continuously Tracker tool

Smart mirror Acceptance of end-user
Periodically on pilot dura-

tion
Questionary

Smart mirror Bug report Continuously Tracker tool

1.5 MedicalSyn Digital Solution (MedSyn)

MedicalSyn offers digital services for medical, clinical-care situations and clinical trials.
MedSyn’s digital solution an electronic Case report form (eCRF), digital patient
surveys, a video consultation tool and graphical tool for medical history. It can be
specifically transferred to the needs and requirements of the SHAPES digital solution
to connect service providers and improve connection and communication.

1.5.1 Overview of deployment and customization options

In relation to the Big Data Platform and the analytics engine, it provides outputs
following common data models. For each analytical solution the outputs will tend to
have a fixed structure. The adaptations of the outputs for each Piot /Use case will be
aligned with the decisions accorded with the partners in charge of visualization of the
results and the Pilot/Use case leaders.

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

98

In this sense, the analytic engine is developed to fulfil the main requirements and
objectives of the use cases that will be use the results. Therefore, the adaptations of
the analytical services for the different use cases are based on the selection of the
features that will be displayed within the front-end tools. In any case, the results
generated by the analytical engines working within the data platform, meet some
requirements:

• The outputs are linked to the IDs of the users.
• The standard output format is json.
• Each digital solution provides the outputs following a data model that
fulfils the general purposes of the analytic requirements.
• From this data model, the relevant selection of features for each use
case will be shown in the front-end services.

In relation to the Big Data Platform and the analytics engine, the adaptations are
linked to the selection of outputs coming from the analytic engines. Following the
common requirements of the outputs, the distribution and adaptations of the analytical
solutions across the use cases can be summarized for each analytical solution. Three
analytical solutions will be working within the big data platform:

1. Sleep Quality & Physical intensity Level: it provides the assessment of the sleep
quality and the physical activity performed by the participants. The adaptations
for the use cases are:

▪ PT1-UC-001: visualisations for sleep quality and physical intensity level
through eCare. The outputs can feed other analytical solution developed by
TREE, Routine and Anomaly detection.
▪ PT2-UC-001: visualisations for sleep quality and physical intensity level
through eCare complete use of the outputs generated by this analytical en-
gine. Additionally, the outputs will be used as input for recommendation and
alert systems developed by VICOM.
▪ PT3-UC-001: only a limited selection of outputs is used in this use case
like sleep duration and sleep interruptions. For the physical activity assess-
ment only the amount of exercise will be considered ignoring the intensities
and kind of activity considerations.

2. Vitals Control: based in the calculations of dynamic and personalized thresh-
old for the control of blood glucose, blood pressure, oxygen saturation
and heart rate.

▪ PT3-UC-general: calculations are based on blood glucose, blood pres-
sure, oxygen saturation and heart rate. Results will be consumed by two
different components eCare and eHealthpass.
▪ PT3-UC-001: calculations are based only on blood pressure, oxygen
saturation and heart rate. Results will be consumed only by eCare.

3. Routine and Anomaly detection: analytical solution developed to detect anom-
alies in the normal sequences of activities (routines) from a smart-home sensor
network.

▪ PT1-UC-001: The analytical solution is fully dedicated to this use case.

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

99

Annex 2 Integration of Digital Solutions with
ASAPA and Front-end App.

ASAPA, being a technology- and framework- agnostic authentication scheme, is used
by a wide variety of Digital Solutions in the SHAPES project that make use of different
frameworks, programming languages, and underlying infrastructure.
By offering a generic RESTful API, ASAPA can be easily integrated into any
technology a Digital Solution is built upon, making it a robust and self-explanatory
Authentication mechanism.

2.1 Conversion of needs to specifications for integration

Digital Solution providers contributed to the development of needs so that the API of
the authentication component can support easy the integration of these solutions,
without having the burden of making technology-specific customizations, and similar
trade-offs.
In addition, the usage of an authentication token, removes the responsibility of storing
sensitive personal data in the Digital Solutions’ database. The Digital Solution sends
the authentication credentials (user email and password), and receives an
authentication token which can be then used in all requests towards the SHAPES
framework. Even if this token is eavesdropped, it neither contains no information about
the user, nor can it be used past its expiration date (set also by the ASAPA scheme).

2.2 Refactoring of a Digital Solution to accommodate ASAPA

Most Digital Solutions already offer a dedicated Authentication Scheme. In most

cases, a Digital Solution might connect to an external or internal database, in order to
perform authentication, and then fetch and store user-specific data.

With ASAPA, an additional layer of authentication should be added. The Digital
Solution needs to extend its own authentication process, in order to be able to make
a REST call to the ASAPA as well, then, the Digital Solution stores the ASAPA
authentication token and is ready to use it when making REST calls to the SHAPES
component ecosystem.

2.3 Integrating Front-end App with a Digital Solution

If a Digital Solution is already installed on the same Android handheld device as the

Front-End-App, and the Front-End app includes the necessary information to open the
Digital Solution, then the Digital Solution is not required to implement the ASAPA
authentication component to authenticate the user. The Front-end app can perform
the authentication with ASAPA, and then trigger each Digital Solution to open, by also

 D4.3: Integration Plan and Test Cases Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

100

passing the authentication token. Then, the Digital Solution also stores this token and
uses it in any request towards SHAPES infrastructure.

If the user opens a Digital Solution directly (without opening the Front-end app first),
the Digital Solution should then trigger the Front-end app in order to perform the
authentication.

Additionally, if the authentication token expires and the authentication with ASAPA
should be performed again, the Digital Solution should be able to trigger the Front-end
app again in order to perform the authentication, and return to the Digital Solution with
new authentication.

