
 D4.2 SHAPES TP Development Tools and Capabilities Toolkit

Smart and Healthy Ageing through People Engaging in supporting Systems

D4.2 SHAPES TP Development Tools and
Capabilities Toolkit

Project Title
Smart and Healthy Ageing through People Engaging in
Supportive Systems

Acronym SHAPES

Grant Number 857159

Type of instrument Innovation Action

Topic DT-TDS-01-2019

Starting date 01/11/2019

Duration 48

Work package WP4 – SHAPES Technological Platform

Lead author Eleni ZAROGIANNI (ICOM) and Ilia PIETRI (ICOM)

Contributors

ICOM: Artur KRUKOWSKI

EDGE : Marco Manso (EDGE), Jose Pires, Barbara Guerra

GNO: Fotis Gonidis & Alexander Berler

FINT: George Bogdos & Anargyros Sideris

HMU: Yannis Nikoloudakis

TREE: Tatiana Silva

VICOM: Luis Unzueta, Manex Serras, Gorka Epelde, Jordi Torres,
Naiara Muro, Jon Kerexata, Garazi Artola, Gorka Epelde &
Eduardo Carrasco

Version 1.0 submission for internal peer review

Due date 30/04/2022 (M30)

Submission date 30/04/2022 (M30)

Dissemination Level PU Public dissemination

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 857159

Ref. Ares(2022)3337110 - 29/04/2022

 D4.2 SHAPES TP Development Tools and Capabilities Toolkit

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

2

Revision History

Rev.

Date Editor Comments

0.1 2/03/2022 A. Krukowski (ICOM) ToC

0.2 8/03/2022
E. Zarogianni (ICOM),
I. Pietri (ICOM)

Updated ToC, Section 1 and 2

0.3 22/03/2022 E. Zarogianni (ICOM)
Section, 3.1.2 Sections 4.1 and 4.2,
Section 5.

0.31 25/03/2022 Y. Nikoloudakis (HMU) Section 3.1, 3.7 and 4.1

0.32 28/03/2022 F. Gonidis (GNO) Section 3.5 and 4.4

0.33 30/03/2022 Tatiana Silva (TREE) Section 3.6

0.34 30/03/2022 A. Sideris (FINT) Section 3.3 and 3.4

0.4 30/03/2022
E. Zarogianni, I. Pietri,
A. Krukowski (ICOM)

Section 3.2 and Section 4.2

0.5 1/04/2022
M. Serras (VICOM),

T. Silva (TREE)

Section 3.8

Section 4.3

0.6 6/04/2022 I. Pietri (ICOM) Sections 3.2, 4.1 and 4.2

0.7 6/04/2022 F. Gonidis (GNO) Section 3.5.4

0.8 11/04/2022 V. Stamatiadis First Review

0.9 29/04/2022
E. Zarogianni, I. Pietri,
A. Krukowski (ICOM)

Post-PR corrections, incl. add-ons
from partners, e.g. EDGE, TREE etc.

1.0 30/04/2022 E. Zarogianni (ICOM)
Final version submitted the
coordinator and uploaded to EC

Keywords
Technological Platform, Design, Architecture, Implementation, Development Tools,
Source Code.

Disclaimer
This document contains information which is proprietary to the SHAPES consortium.
Neither this document nor the information contained herein shall be used, duplicated
or communicated by any means to any third party, in whole or parts, except with the
prior written consent of the SHAPES coordinator.

 D4.2 SHAPES TP Development Tools and Capabilities Toolkit

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

3

Table of Contents
1 Introduction .. 8

1.1 Partners Involved in Relevant Tasks in WP4 ... 8
1.2 Field of Application .. 9
1.3 Structure and Scope of the Document .. 9
1.4 Relation to other work in the project .. 9

2 SHAPES TP Prototype Integration .. 10

2.1 SHAPES Architecture ... 10
2.2 Code Repository .. 11
2.3 SHAPES Integration Approach ... 12
2.4 External Tools .. 12

3 Project Build and Deployment of SHAPES TP Prototype 13

3.1 ASAPA Authentication and Authorisation (HMU) ... 13
3.1.1 Generic Information .. 13
3.1.2 Source Tree Information ... 13
3.1.3 Tools and Project Dependencies ... 14
3.1.4 Build and Deployment Procedure ... 14
3.2 The symbIoTe orchestration middleware (ICOM) ... 14
3.2.1 Generic Information .. 14
3.2.2 Source Tree Information ... 14
3.2.3 Tools and Project Dependencies ... 15
3.2.4 Build and Deployment Procedure ... 15
3.2.5 symbIoTe Core deployment .. 16
3.2.6 symbIoTe API deployment ... 19
3.2.6.1 symbIoTe Cloud deployment ... 20
3.2.6.1.1 Prerequisites .. 20
3.2.6.1.2 Registration of platform owner ... 20
3.2.6.1.3 Registration of platform’s L2 Cloud services ... 21
3.2.6.1.4 Configuring Docker compose files ... 27
3.2.6.1.5 Configuring NGINX micro-service .. 27
3.2.6.1.6 Running Docker stack of the symbIoTe L2 Cloud services .. 29
3.2.6.1.7 Running symbIoTe L2 Cloud services as a Docker stack .. 29
3.2.6.1.8 Creating the RAP plugin ... 30
3.3 FINoT IoT platform (FINT) .. 31
3.3.1 Generic Information .. 31
3.3.2 Build and Deployment Procedure ... 31
3.4 SHAPES Gateway (FINT) ... 31
3.4.1 Generic Information .. 31
3.4.2 Source Tree Information ... 32
3.4.3 Tools and Project Dependencies ... 32
3.4.4 Build and Deployment Procedure ... 32
3.4.4.1 Smart space middleware ... 32
3.4.4.1.1 Register user and configure symbIoTe Smart Space ... 33
3.4.4.1.2 Installing prerequisites in the virtual machine. ... 35
3.4.4.2 Gateway’s symbIoTe Client (L3-compliant GW) .. 37
3.5 FHIR and eHealthPass Medical Interoperability (GNO) ... 38

 D4.2 SHAPES TP Development Tools and Capabilities Toolkit

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

4

3.5.1 Generic Information .. 38
3.5.2 Source Tree Information ... 39
3.5.3 Build and Deployment Procedure ... 39
3.6 Data Lakehouse and Analytics Engine (TREE) .. 39
3.6.1 Generic Information .. 39
3.6.2 Source Tree Information ... 40
3.6.3 Tools and Project Dependencies ... 40
3.7 SHAPES Front-end Application (EDGE) .. 40
3.7.1 Generic Information .. 40
3.7.2 Source Tree Information ... 41
3.7.3 Tools and Project Dependencies ... 41
3.7.4 Build and Deployment Procedure ... 42
3.8 Marketplace (HMU) ... 42
3.8.1 Generic Information .. 42
3.8.2 Tools and Project Dependencies ... 42
3.8.3 Build and Deployment Procedure ... 42
3.9 Human Interaction and Visual Mapping (VICOM) ... 43
3.9.1 Generic Information .. 43
3.9.2 Source Tree Information ... 43
3.9.3 Tools and Project Dependencies ... 43
3.9.4 Build and Deployment Procedure ... 43

4 Communication Diagrams ... 44

4.1 User Initialisation Workflow .. 44
4.2 IoT data interoperability workflows .. 45
4.3 Exchange of FHIR data ... 52
4.4 Data Lakehouse Workflow .. 54
4.4.1 Data Ingestion Workflow ... 54
4.4.1.1 IoT Data Ingestion Workflow ... 55
4.4.1.2 Non-IoT Data Ingestion Workflow ... 55
4.4.2 Data Processing Execution .. 56
4.4.3 Data Query... 56

4 Results and Conclusions ... 58

5 Ethical Requirements Check ... 59

6 References .. 60

 D4.2 SHAPES TP Development Tools and Capabilities Toolkit

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

5

List of Figures

FIGURE 1- SHAPES TP ARCHITECTURE. .. 10

FIGURE 2 - ACCESS TO SYMBIOTE CORE ADMINISTRATION GUI. ... 20

FIGURE 3 - REGISTRATION OF PLATFORM OWNER TO SYMBIOTE CORE. .. 21

FIGURE 4 - REGISTRATION OF THE PLATFORM.. 22

FIGURE 5 – EXAMPLE OF PLATFORM DETAILS IN REGISTRATION. .. 23

FIGURE 6 – CONFIRMATION OF SUCCESSFUL PLATFORM REGISTRATION. ... 23

FIGURE 7 – PANEL OF THE PLATFORM REGISTERED. .. 24

FIGURE 8- PLATFORM CONFIGURATION DETAILS. ... 25

FIGURE 9- STRUCTURE OF THE DEPLOYMENT FOLDER. ... 29

FIGURE 10 - REGISTRATION OF THE SMART SPACE ADMIN AT SYMBIOTE'S GUI. ... 33

FIGURE 11 – SYMBIOTE SMART SPACE REGISTRATION. .. 34

FIGURE 12 - DELETION OF A SMART SPACE. .. 35

FIGURE 13 --USER INITIALIZATION WORKFLOW. .. 44

FIGURE 14 - USER REGISTRATION TO SYMBIOTE. ... 46

FIGURE 15 – REGISTRATION OF IOT RESOURCES TO SYMBIOTE. .. 47

FIGURE 16 – SEARCH L1 RESOURCE. ... 47

FIGURE 17 – SEARCH L2 RESOURCE. ... 48

FIGURE 18 – ACCESS L1 RESOURCES. .. 49

FIGURE 19 - ACCESS L2 RESOURCE. .. 49

FIGURE 20 – SUBSCRIPTION TO A RESOURCE. .. 50

FIGURE 21: REGISTRATION TO SSP AND ACCESS TO RESOURCES (L3)... 51

FIGURE 22: STORING OF IOT DATA TO FINOT PLATFORM. .. 52

FIGURE 23: FHIR WORKFLOW. .. 53

FIGURE 24 – DATA LAKEHOUSE WORKFLOW. ... 54

FIGURE 25 – DATA INGESTION WORKFLOW. ... 55

FIGURE 26 – DATA INGESTION FOR IOT DATA ... 55

FIGURE 27 – DATA INGESTION FOR NON-IOT DATA. .. 55

FIGURE 28 – DATA PROCESSING .. 56

FIGURE 29 – DATA QUERY. .. 57

 D4.2 SHAPES TP Development Tools and Capabilities Toolkit

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

6

Table of Acronyms and Abbreviations

Acronym Description

AIV Assembly, Integration and Verifications

API Application Programming Interface

App Application

ASAPA Authentication, Security and Privacy Assurance

CO Consortium only dissemination level

PU Public Dissemination level

DoA Description of the Action

EC European Commission

FHIR Fast Healthcare Interoperability Resources

ICD Interface Control Document

GDPR General Data Protection Regulation

JSON JavaScript Object Notation

MedSyn MedicalSyn GmbH

OMN Omnitor AB

PM Person Month

QA Quality Assurance

RAMS Reliability, Availability, Maintainability, Safety of Means & People

RAP Resource Access Proxy

REST REpresentational State Transfer

RIA Research and Innovation Action

SciFY Science for You

STC Scientific Technical Coordinator

TP Technological Platform

TRD Technical Requirements Document

UCLM Universidad de Castilla - La Mancha

URL Uniform Resource Locator

VICOM Vicomtech

WP Work Package

 D4.2 SHAPES TP Development Tools and Capabilities Toolkit

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

7

Executive Summary
The purpose of this deliverable is to report on the work that has been performed in all
the development tasks in Work Package 4 of the SHAPES project with respect to
providing source-code and libraries such that 3rd-party developers would be able to
take advantage of the SHAPES Technological Platform and be able to develop their
value-added applications and services. Hence, the codes offered on GitHub repository
of SHAPES as well as this report are intended for public dissemination.

Specifically, the sources codes and reference guides constituting this deliverable have
been sources from the following tasks of WP4:

• Task 4.3 Implementation of the Mediation Framework and Interoperability Services
o SymbIoTe SDK and API

• Task 4.4 Implementation & Deployment of the Secure Cloud and Big Data Platform
o Big data platform API

• Task 4.5 Human Interaction and Visual Mapping
o voice, NLP and video features API

• Task 4.6 SHAPES Authentication, Security and Privacy Assurance
o authentication API

• Task 4.7 SHAPES Gateway Reference Implementation
o Gateway reference binary

The above mentioned source codes, libraries and SDKs are available on SHAPES
GitHub (https://github.com/SHAPES-H2020) while this accompanying report provides
the reference guide for those codes including API to platforms and services accessible
remotely from each provider.

https://github.com/SHAPES-H2020

 D4.2 SHAPES TP Development Tools and Capabilities Toolkit

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

8

1 Introduction
Deliverable D4.2 “SHAPES TP Development Tools and Capabilities Toolkit” contains
source codes, SDKs, libraries and APIs developed by all partners in WP4 and consti-
tute public software support for 3rd-party developers and service providers wishing to
take advantage of the SHAPES interoperability framework and supported Digital So-
lutions through the SHAPES Technological Platform. Since the actual software has
been uploaded to a dedicated GitHub project (https://github.com/SHAPES-H2020),
this report hence offers a reference guide to the list of repositories and code provided
therein with reference guide how to use each of those.

1.1 Partners Involved in Relevant Tasks in WP4

The main task producing this deliverable was Task 4.8 (Integration and Testing of
SHAPES TP) that focussed on the integration and validation of the integrated
SHAPES technological platform.

A complete list of consortium partners contributing to deliverable D4.2 is as follows:

Table 3 – Deliverable Contributors.

ID Short Name Role

8 EDGE Provider of the Front-end App

12 FINT

Leader of Task 4.

Provider of FINoT IoT platform

Provider of SHAPES Gateway

13 GNO
Leader of Task 4.

Provider of FHIR interoperability framework

15 ICOM

Leader for deliverable D4.2

SHAPES Technical Manager

Integration manager for SHAPES-TP

Provider of symbIoTe and its API/SDK/plug-ins

Provider of SHAPES messaging server

16 KOM Provider of robot accessibility SDK

27 HMU
Leader of Task 4.

Provider of ASAPA authentication framework

28 TREE

Leader of WP5 and Task 4.

Provider of Data Lakehouse repository

Provider of the Analytics Engine

35 VICOM
Leader of Task 4.5

Provider of o voice, NLP and video features API

https://github.com/SHAPES-H2020

 D4.2 SHAPES TP Development Tools and Capabilities Toolkit

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

9

1.2 Field of Application

This document is applicable to the remaining work within WP4 aiming at testing the
integration of the core components into SHAPES TP, as well as the integration with
the digital solutions that will be implemented in WP5. The various modules of the
SHAPES TP will be integrated and tested in laboratory environment from a functional
perspective. The integrated prototype will be ready to be deployed for the pilots and
tested by the end users in accordance to the scenario uses cases.

1.3 Structure and Scope of the Document

The deliverable D4.4 “Integration Testing Results (preliminary version)” reports on the
mid-phases of work produced in Task 4.8. “Integration and Testing of SHAPES
Technological Platform” with respect to planned actions related to integration and
deployments of the SHAPES platform for use case evaluations. The structure of the
document is as follows:

Section 1: Introduction and Methodologies

Describes the methodologies for the integration activities.

Section 2: SHAPES TP Prototype Integration

Briefly describes the SHAPES Architecture, the integration approach
followed for testing the SHAPES integrated prototype and the SHAPES
repository structure, under which source codes are held

Section 3: Project Build and Deployment of SHAPES Prototype Components

Describes the structure of the developed component’s software, the
build and deployment requirements and the functionalities and
dependencies of the individual components.

Section 4: Communication Diagrams.

Describes the flow of information between SHAPES component.

Section 5: Results and Conclusions.

1.4 Relation to other work in the project

This deliverable is based on results from:

• D4.1 “SHAPES TP Requirements and Architecture” (due M18)

• D4.3 “Integration Plan and Test Cases” (due M24)

• D4.6 “SHAPES Interoperability Reference Testing Environment” (due M18)

• D6.1 “SHAPES Pan-European Pilot Campaign Plan” (due M6)

• D8.4 “Ethics Framework for Shapes solution” (due M6)

The outcomes from D4.2 feed to:

• WP6: “SHAPES Pan-European Pilot Campaign”

• WP7: “Market Shaping, Scale-up Business Models and Socio-Economic Impact”

 D4.2 SHAPES TP Development Tools and Capabilities Toolkit

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

10

2 SHAPES TP Prototype Integration

2.1 SHAPES Architecture

The SHAPES Technological Platform (TP) brings a combination of devices, software,
and accessible modes of interacting within the living environment that can adapt to the
needs and priorities of older individuals, including those facing permanent or
temporary reduced functionality and capabilities.

A number of established Digital Solutions (DS) that comprise the SHAPES ecosystem
are expected to interconnect and integrate with the SHAPES core Technological
Platform (TP), which is depicted in the lilac-hued area of the Figure 1 below.

Figure 1- SHAPES TP architecture.

The SHAPES TP comprises of the following core components:

• symbIoTe IoT Interoperability Platform from ICOM is a mediation framework
that facilitates the exchange of IoT Data between Digital Solutions and
Platforms.

▪ FINoT IoT Data Management Platform from FINT is a FIWARE-based IoT
framework, used to interconnect sensors, actuators and loggers. It acts as a
central point for gathering IoT data, before these are fed to the Big Data Plat-
form.

▪ ASaPA Single Sign-on Authentication engine from HMU offers authentication
and authorization framework. Every user, digital solution, platform etc. is re-
quired to first register to the ASAPA component to get an authorization token in
order to be able to interact within the SHAPES ecosystem.

 D4.2 SHAPES TP Development Tools and Capabilities Toolkit

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

11

▪ Gateway from FINT facilitates the interconnection of the edge IoT devices with
the SHAPES Core cloud platform, enabling as such the accommodation of the
IoT collected data to the FINoT IoT platform (part of the SHAPES core).

▪ FHIR Medical Data Interoperability from GNO. The FHIR medical interoperabil-
ity component facilitates the interoperability and communication among digital
solutions that exchange medical-related information with each other and/or
other SHAPES core components. Its main component is the Message Queue
(MQ), which allows the flow of medical-related resources among Digital Solu-
tions or from Digital Solutions to the Data Lakehouse.

▪ Big Data Platform combining Data Lakehouse with the Analytics Engine from
TREE. The Data Lakehouse along with the Analytics Engine form the so-called
Big data Platform that allows Digital Solutions to send their data to the Data
Lakehouse for advance processing, using an AI-based Analytics Engine. Re-
sults from the Data Analytics Engine (DAE) are sent back to relevant Digital
Solutions.

▪ SHAPES Front-end Application from EDGE, brings a simple user interface
providing a centralised access to the SHAPES Digital Solutions installed in the
participant’s mobile phone or tablet. It also provides a mechanism for the single
authentication of the user in the device

▪ Message Broker from ICOM, enables the asynchronous notification mecha-
nisms for all core components and interconnected Digital Solutions to be able
to schedule exchange of information among them, without periodic checks.

2.2 Code Repository

Source code is available at GitHub: https://github.com/SHAPES-H2020, under which
repositories per component have been created containing all the necessary
information required for the project’s build and deployment.

The structure of the GitHub project for SHAPES is as follows:

• ASAPA: ASAPA authentication system by HMU

• Data Lakehouse: Data Lakehouse by TREE

• FHIR: FHIR interoperability API by Gnomon

• FINOT: FINoT IoT platform by FINT

• Front-end-App: Front-end App support package by EDGE

• Gateway: Gateway integration support by FINT

• Marketplace: Marketplace integration support by HMU

• Message-Queue: SHAPES-TP message queue by ICOM

• Robots: Support package for Kompai robots

• symbIoTe: symbIoTe interoperability platform by ICOM

• VICOM: Human Interaction and Visual Mapping components by VICOM

https://github.com/SHAPES-H2020
https://github.com/SHAPES-H2020/ASAPA
https://github.com/SHAPES-H2020/DataLake
https://github.com/SHAPES-H2020/FHIR
https://github.com/SHAPES-H2020/FINOT
https://github.com/SHAPES-H2020/Front-end-App
https://github.com/SHAPES-H2020/Gateway
https://github.com/SHAPES-H2020/Marketplace
https://github.com/SHAPES-H2020/Message-Queue
https://github.com/SHAPES-H2020/Robots
https://github.com/SHAPES-H2020/Symbiote
https://github.com/SHAPES-H2020/VICOM

 D4.2 SHAPES TP Development Tools and Capabilities Toolkit

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

12

2.3 SHAPES Integration Approach

The project consortium uses the integration framework described in detail in D4.3
“Integration Plan and Test Cases” as the basis for implementation. During the
implementation testing and lab deployment, each component (solution) is deployed
and maintained at the premises of each relevant SHAPES partner. Communication
between the different SHAPES TP core components is realised by providing RESTful
APIs to expose their services, with JavaScript Object Notation (JSON) mainly being
used for the format of the data. The relevant swagger documentation is provided by
each component owner to describe their RESTful APIs. Asynchronous communication
is, also, supported between the components through the deployment of a RabbitMQ
server. Where possible, Docker is used for packaging the component’s software and
facilitating deployment of the components to other infrastructures. The respective
container images are provided at Docker Hub1, while SDKs, APIs or source code and
respective configuration and deployment files such as Dockerfiles or Docker compose
files are provided at each component’s GitHub repo. Information and guidelines for the
deployment of each SHAPES TP component in the integrated prototype is described
in Section 3.

2.4 External Tools

The SHAPES TP has further dependencies on external tools, so that certain aspects
of the platform prototype can be easily realised:

• RabbitMQ (version 3.6+): message queue server for the asynchronous com-
munication between SHAPES TP core components. RabbitMQ’s use is granted
under a “Mozilla Public License”. The RabbitMQ server is deployed at ICOM’s
premises to enable the exchange of notifications between SHAPES core com-
ponents. A Message-Queue GitHub repo has been configured to add any ac-
companying material for the SHAPES-TP message queue component by
ICOM.

• Amazon Web Services (AWS): used in the deployment of the Big Data Platform
(Data Lakehouse and Analytics Platform) to provide scalable cloud computing
services.

• Terraform: used to manage public cloud resources, such as AWS. Terraform
Path specifically integrates the different projects, its documentation, and
frameworks and infrastructure.

• MongoDB (version 3.6+): database used by symbIoTe components.

• Nginx (version 1.12+): for enabling access of platform components with the
external world (i.e., applications, enablers, symbIoTe core).

1 https://hub.docker.com/u/shapes2020

https://github.com/SHAPES-H2020/Message-Queue
https://hub.docker.com/u/shapes2020

 D4.2 SHAPES TP Development Tools and Capabilities Toolkit

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

13

3 Project Build and Deployment of SHAPES TP
Prototype

This section provides information about the SHAPES TP core components integration
and the deployment of the integrated SHAPES TP prototype. It provides information
for the structure of each developed component’s software, the build and deployment
requirements and dependencies specific to them.

3.1 ASAPA Authentication and Authorisation (HMU)

3.1.1 Generic Information

URL of GitHub Repository https://github.com/SHAPES-H2020/ASAPA

URL of Container Registry https://hub.docker.com/r/shapes2020/asapa

URL of Deployment yaml file. https://github.com/SHAPES-
H2020/ASAPA/blob/main/docker-
compose.yaml

3.1.2 Source Tree Information

The ASAPA component’s source code contains the modules:

• /app_logger contains the functionality for logging

• /auth_module contains the authentication function and code

• /database_module contains the functions that manages the database
connection and interaction

• /environment contains the variables for development and production
environments

• /mq_client contains the functionality to register and interpret messages from a
Rabbit MQ server, similar to consumer

• /policy_enforcer contains functionality for authorization of ASAPA

• /unit_tests contain the available unit tests

• /utils contains different function that are used in the project

https://github.com/SHAPES-H2020/ASAPA
https://hub.docker.com/r/shapes2020/asapa
https://github.com/SHAPES-H2020/ASAPA/blob/main/docker-compose.yaml
https://github.com/SHAPES-H2020/ASAPA/blob/main/docker-compose.yaml
https://github.com/SHAPES-H2020/ASAPA/blob/main/docker-compose.yaml

 D4.2 SHAPES TP Development Tools and Capabilities Toolkit

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

14

3.1.3 Tools and Project Dependencies

Tool
Version Description

Docker-compose 3.9
Needed for deploying ASAPA

Docker image

Docker-ce stable

git protocol 2.35.1
Needed for downloading the

ASAPA

3.1.4 Build and Deployment Procedure

• git clone https://github.com/SHAPES-H2020/ASAPA

• cd /ASAPA

• Docker-compose up –d

The ports exposed are 8001 for the ASAPA service and 27018 for the database.

3.2 The symbIoTe orchestration middleware (ICOM)

3.2.1 Generic Information

URL of GitHub
Repository

https://github.com/SHAPES-H2020/symbioteAPI

URL of Container
Registry

https://hub.docker.com/r/shapes2020/symbiote-rap-websocket
https://hub.docker.com/r/shapes2020/symbiote-api

URL of
Deployment yaml

file

https://github.com/SHAPES-H2020/symbiotecore

https://github.com/SHAPES-
H2020/symbiotecloud/tree/master/resources/docker/docker-compose

3.2.2 Source Tree Information

The symbIoTe project within the SHAPES repository has the following submodules:

• https://github.com/SHAPES-H2020/symbIoTeAPI,which includes the source code
for the symbIoTeAPI service developed within the SHAPES project to offer a set
of REST services designed to cover basic client requirements, without requiring
applications or developers to download symbIoTe libraries.

• https://github.com/SHAPES-H2020/symbioteRAPNoticationAppExample, which
includes the source code for an application example of subscribing to a resource
to receive notifications, modified for the purposes of the SHAPES project.

https://github.com/SHAPES-H2020/ASAPA
https://github.com/SHAPES-H2020/symbioteAPI
https://hub.docker.com/r/shapes2020/symbiote-rap-websocket
https://hub.docker.com/r/shapes2020/symbiote-api
https://github.com/SHAPES-H2020/symbiotecore
https://github.com/SHAPES-H2020/symbiotecloud/tree/master/resources/docker/docker-compose
https://github.com/SHAPES-H2020/symbiotecloud/tree/master/resources/docker/docker-compose
https://github.com/SHAPES-H2020/symbIoTeAPI
https://github.com/SHAPES-H2020/symbioteRAPNoticationAppExample

 D4.2 SHAPES TP Development Tools and Capabilities Toolkit

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

15

• https://github.com/SHAPES-H2020/symbiotecore, which includes the
configuration files and information required for the deployment of the symbIoTe
core stack.

• https://github.com/SHAPES-H2020/symbiotecloud, which includes the
configuration files and information required for the deployment of the symbIoTe
cloud stack.

• https://github.com/SHAPES-H2020/symbiotesmartspace, which includes the
source code for the smart space. Note that smart space is part of the SHAPES
gateway and is described in detail later, in the relevant section for the SHAPES
gateway (Section 3.4).

Note that the symbIoTe software has only been extended for the purposes of the
SHAPES project and original information is available at symbIoTe’s GitHub
repository2.

3.2.3 Tools and Project Dependencies

Tool
Version Description

Docker
18.03.x symbIoTe software is provided in containerised form

Docker-
compose

1.21.x symbIoTe software is provided in containerised form

Docker-
machine

0.14.x symbIoTe software is provided in containerised form

MongoDB
3.6+ Containerised MongoDB database is used by symbIoTe

Core/Cloud components for storing resource metadata

RabbitMQ
3.6+ Containerised RabbitMQ database is used by symbIoTe

Core/Cloud components for internal communication
between the subcomponents of symbIoTe.

NGINX
1.12+ NGINX is used for symbIoTe to enable access to

components services from externally

3.2.4 Build and Deployment Procedure

As already mentioned, the symbIoTe software has been extended for the purposes of
the SHAPES project and original instructions on how to deploy symbIoTe can be found
at symbIoTe’s GitHub repository3. This section provides the information and guidelines
to deploy the services required for using symbIoTe within the SHAPES context.

2 https://github.com/symbiote-h2020

3 https://github.com/symbiote-h2020

https://github.com/SHAPES-H2020/symbiotecore
https://github.com/SHAPES-H2020/symbiotecloud
https://github.com/symbiote-h2020
https://github.com/symbiote-h2020

 D4.2 SHAPES TP Development Tools and Capabilities Toolkit

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

16

3.2.5 symbIoTe Core deployment

This section explains how to deploy the symbIoTe Core components stack using
Docker directly in a VM running Linux. The instructions can also be found at the
relevant wiki page. This is based on the online documentation for symbIoTe-core4
available at the original symbIoTe’s GitHub repository.

1. Preparation steps

1.1. Install prerequisites

• docker (18.03.x),

• docker-compose (1.21.x),

• bash,

• curl

1.2. Create deployment folder at file system

• Create a symbiote-core folder at the virtual machine’s file system, e.g., mkdir
symbiote-core

• Then inside the symbiote-core folders create the configuration folder:
cd symbiote-core
mkdir configuration

1.3. Create the Core AAM certificate required for your deployment

You need to create a PKCS12 key store containing a certificate and copy it inside the
configuration folder; the steps to follow are described below. The key store will be used
to self-initialize the AuthenticationAuthorizationManager (AAM) codes as Core AAM.

The key store is used by Core AAM micro service to authenticate third-party users and
applications (i.e., users and applications that are not associated with any IoT platform).
Core AAM micro service provides credentials required to access symbIoTe Services
and also supports trust relationships between platforms, as it acts as the root
certification authority.

The PKCS12 key store must have the following specifications:

• self-signed

• CA property enabled

• the following encryption parameters:
- SIGNATURE_ALGORITHM=SHA256withECDSA
- CURVE_NAME= prime256v1
- KEY_PAIR_GEN_ALGORITHM=ECDSA

• Common Name (CN) value set according to AAMConstants.java field
CORE_AAM_INSTANCE_ID value (currently equal to string “SymbI-
oTe_Core_AAM”)

• certificate entry name: "symbiote_core_aam"

4 https://github.com/symbiote-h2020/SymbioteCore

https://github.com/SHAPES-H2020/symbiotecore/wiki
https://github.com/symbiote-h2020/SymbioteCore

 D4.2 SHAPES TP Development Tools and Capabilities Toolkit

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

17

The steps below need to be followed to create the PKCS12 key store core.p12:

• Create private key executing the following command:

openssl ecparam -name prime256v1 -genkey -out private-key.pem

• Create Certificate Signing Request (CSR) executing the following command:

openssl req -new -sha256 -key private-key.pem -out CSR.csr

• Create the certification executing the following command:

openssl x509 -req -days 3600 -in CSR.csr -signkey private-key.pem -out
server.crt

Set CN = SymbIoTe_Core_AAM when is asked from the previous command.

• Creation of PKCS12 Keystore executing the following commands:

cat private-key.pem >server.pem

cat server.crt >> server.pem

openssl pkcs12 -export -in server.pem -out core.p12 -name paam -noiter -
nomaciter

Copy the generated core.p12 keystore file inside the configuration folder.

1.4. Create necessary folders for your deployment

Copy from GitHub repo the following files in to configuration folder:

- AuthenticationAuthorizationManager folder,

- CoreConfigProperties folder,

- CoreInterface folder,

- bootstrap.properties file,

- nginx-ngrok.conf,

- nginx-prod.conf,

- nginx.conf.

Fill in all the fields marked with FILL ME in the TODO section of the following files:

- CoreConfigProperties/application.properties

- AuthenticationAuthorizationManager/bootstrap.properties

- bootstrap.properties

Enter the CoreConfigProperties folder, make any changes if necessary to the
*.properties files (e.g. Mongodb, rabbitMQ credentials).

git clone https://github.com/symbiote-h2020/SymbioteCore.git
configuration/CloudConfigProperties

Enter the CoreConfigProperties folder:

cd CoreConfigProperties,

https://github.com/SHAPES-H2020/symbiotecore

 D4.2 SHAPES TP Development Tools and Capabilities Toolkit

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

18

to make any changes in the properties that are required e.g. the credentials and
commit the changes:

git commit -am "SymbIoTe Core configuration"

cd ..

1.5. Create necessary docker volumes for your deployment

Change directory so that the current directory is the configuration folder.

Run from configuration folder the following command to create the necessary docker
volume to hold the CoreconfigProperties:

docker container run --rm -v $PWD/CoreConfigProperties:/source -v {docker stack
name}_symbiote-vol-config:/home/CoreConfigProperties -w /source alpine cp -r .
/home/CoreConfigProperties/

As {docker stack name} use one that matches your project, thus a selected docker
stack name such as “symbiote-core”.

Copy in configuration folder the docker-compose files required (see GitHub):

- docker-compose-swarm-core.yml

- docker-compose-prod-swarm-core.yml

Uncomment and configure the proxy settings (JAVA_HTTP_PROXY,
JAVA_HTTPS_PROXY, JAVA_SOCKS_PROXY, JAVA_NON_PROXY_HOSTS), in
docker-compose-swarm-core.yml and docker-compose-prod-swarm-core.yml if you
are behind proxy.

1.6. Obtain necessary certification files for your deployment

• Create fullchain.pem and privkey.pem certificate files as described in

https://github.com/symbiote-h2020/SymbioteCloud/wiki/2.1-Configuration-of-

NGINX#2111-obtaining-the-ssl-certificate or by some other provider.

Note that you can also use the certbot command to create a certificate manually with
dns validation:

certbot --manual certonly --preferred-challenges dns -d <domain name> --email <admin
email>

In that case you will be asked to deploy a DNS TXT record under a specific name.
After the creation of the certificates, letsencrypt informs the user about the location of
the new files. This is the location where the files have to be copied from. The target
location has to be synchronized with the nginx configuration. Normally, it is the nginx-
certificates folder as will be described next, where nginx is configured to find
fullchain.pem and privkey.pem files.

• -Stay inside configuration folder and create the nginx-certificates folder.

• Copy the created fullchain.pem and privkey.pem certificate files to nginx-

certificates folder (alternatively symbolic links can be used):

sudo cp /etc/letsencrypt/live/{your domain}/fullchain.pem nginx-certificates/

sudo cp /etc/letsencrypt/live/{your domain}/privkey.pem nginx-certificates/

https://github.com/SHAPES-H2020/symbiotecore
https://github.com/symbiote-h2020/SymbioteCloud/wiki/2.1-Configuration-of-NGINX#2111-obtaining-the-ssl-certificate
https://github.com/symbiote-h2020/SymbioteCloud/wiki/2.1-Configuration-of-NGINX#2111-obtaining-the-ssl-certificate
https://github.com/SHAPES-H2020/symbiotecore/blob/master/certificate%20command.txt

 D4.2 SHAPES TP Development Tools and Capabilities Toolkit

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

19

sudo chown -R {user}:{group} nginx-certificates

1.7. Start the deployment

• Run: docker swarm init if the node is not a swarm manager. Note this command

is only done in the first deployment when setting the docker swarm and not

when redeploying the stack. We use the swarm mode so that secrets are en-

crypted during transit and at rest. Docker secrets are only available to swarm

services and not to standalone containers.

• Run docker stack deploy -c docker-compose-swarm-core.yml -c docker-compose-

prod-swarm-core.yml {docker stack name} to deploy the service stack. The

{docker stack name} is the name of the service stack. It is the same defined

in $1.5 and in our case we use “symbiote-core”.

• Run docker stack ls to list the stack and check the number of services used.

• Run docker image ls to check that all images have been created. It may take a

while to pull all the images from DockerHub for the first time.

• Run docker service ls to list the services and check their status. Wait until the

actual number of tasks (replicas) for each service is not 0.

• Run docker logs <service_name> -f to get access to and follow the logs of a

service. A service is ready when a message similar to 'Started <service_name>

in 105.045 seconds (JVM running for 112.933)' appears in the logs of the ser-

vice.

• Run sudo service docker restart to restart the docker service stack if needed

and repeat the steps.

• Run docker stack rm {docker stack name} to stop the application and remove

the service stack. Services, networks, and secrets associated with the stack will

be removed. Note that {docker stack name} is equal to “symbiote-core” string

in SHAPES project.

• You can run docker swarm leave --force to leave the swarm (note that this is

not required for redeploying the stack but only if you stop using the node for

docker swarm).

3.2.6 symbIoTe API deployment

The symbIoTe API can be deployed by using the following command:

docker compose up –d symbioteapi.yaml

The yaml file can be found at the symbIoTeAPI’s GitHub repo. Swagger
documentation for the endpoints exposed by the symbIoTe API to interact with
symbIoTe in the context of SHAPES can be found at GitHub:

https://github.com/SHAPES-H2020/symbioteAPI/

 D4.2 SHAPES TP Development Tools and Capabilities Toolkit

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

20

3.2.6.1 symbIoTe Cloud deployment

The process of making an IoT platform symbIoTe-enabled consists of downloading
and setting up symbIoTe Cloud components, integrating these components with your
IoT platform, and registering your platform and resources to symbIoTe Core Services.
The instructions can also be found at the relevant wiki page.

3.2.6.1.1 Prerequisites

Install the following on Linux:

• Docker (18.03.x)

• Docker-compose (1.21.x)

• Docker-machine (0.14.x)

• bash

• curl

• wget

3.2.6.1.2 Registration of platform owner

In this step it is necessary to register the platform owner (user) to symbIoTe Core
through the symbIoTe Core Administration webpage. Visit the symbIoTe Core
Administration web page at the following URL: https://symbiote-core.intracom-
telecom.com/administration/, as shown in the figure below. Press the Register button.

Figure 2 - Access to symbIoTe core administration GUI.

As shown in the following figure, during registration you must provide:

https://github.com/SHAPES-H2020/symbiotecloud/wiki
https://symbiote-core.intracom-telecom.com/administration/
https://symbiote-core.intracom-telecom.com/administration/

 D4.2 SHAPES TP Development Tools and Capabilities Toolkit

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

21

• username

• password

• email

• user role (Service Owner in this case)

Figure 3 - Registration of platform owner to symbIoTe core.

3.2.6.1.3 Registration of platform’s L2 Cloud services

Next, after successful registration you can log in (with the account details used for the
registration of the platform owner) and register your platform (i.e., the symbIoTe Cloud
Services platform). Click on the Platform Details panel and then click on Register
New Platform button on the upper right corner.

 D4.2 SHAPES TP Development Tools and Capabilities Toolkit

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

22

Figure 4 - Registration of the platform.

Then, the following details must be provided as shown in the figure below:

• Preferable platform ID

• Platform Name

• Platform Description

• Interworking Services: This is the valid URL to your Linux host where you will
install L2 Cloud SHAPES services. It needs public IP address and DNS entry
for that IP address. The alternative is to use ngrok tool which is good for ex-
perimentation but not for production.

• Interworking Interface Information Model: you can use BIM (Best practice
Information Model) for out-of-the-box interoperability using the supported infor-
mation model used in symbIoTe or PIM (Platform Information Model) to register
a platform-specific information model that extends the supported information
model. More details on creating an information model can be found at the wiki
page.

• Type (i.e. Platform or Enabler): in this case use Platform.

https://github.com/SHAPES-H2020/symbiotecloud/wiki/Platform-Information-Model-examples

 D4.2 SHAPES TP Development Tools and Capabilities Toolkit

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

23

Figure 5 – Example of platform details in registration.

After completing this procedure, the IoT platform is now registered to the symbIoTe
Core. It can be seen by selecting the Platform Details menu item.

Figure 6 – Confirmation of Successful platform registration.

The panel of the newly registered platform and its details are available by clicking on
its header or + sign.

 D4.2 SHAPES TP Development Tools and Capabilities Toolkit

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

24

Figure 7 – Panel of the platform registered.

Download configuration files of registered platform’s L2 Cloud services.

The next step is to download the necessary configuration for your deployment of the
symbIoTe L2-compliance Cloud services. When opening the panel of the platform
registered, as shown in the previous section, you can download the platform’s
configuration files by clicking on the Get Configuration button and entering some
details as will be explained below. Hence, a .zip file will be downloaded that contains
platform configuration properties which simplify the services configuration process.

 D4.2 SHAPES TP Development Tools and Capabilities Toolkit

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

25

Figure 8- Platform configuration details.

When pressing the Get Configuration button, a configuration form is displayed (see
the figure below).

Fill the mandatory fields:

• Platform Admin Username.

• Platform Admin Password.

And set

• Type: No.

• Deployment Type: Docker.

• Compliance Level: L2

 D4.2 SHAPES TP Development Tools and Capabilities Toolkit

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

26

The optional fields can be left with their default values or you can set any other value
that is necessary for the registered L2 cloud platform.

Press the Get Configuration button to download the configuration.zip file.

Create folder for your deployment and configure necessary property files

• Create a folder for your deployment, e.g. shapesL2-cloud:

mkdir shapesL2-cloud

• Change to that directory: e.g.

cd shapesL2-cloud

• Unzip in shapesL2-cloud folder the downloaded configuration.zip file.

• Enter the CloudConfigProperties directory.

In CloudConfigProperties/application.properties file set URLs of the interworking
interfaces. There are two kinds of interworking interfaces at symbIoTe Core:

1. coreInterface serves northbound traffic coming from 3rd parties (e.g. applica-
tions searching for resources):

symbIoTe.core.interface.url = https://symbiote-core.intracom-telecom.com

2. cloudCoreInterface serves southbound traffic coming from IoT platforms (e.g.
applications) running at the symbIoTe cloud:

symbIoTe.core.cloud.interface.url = https://symbiote-core.intracom-
telecom.com/cloudCoreInterface

• Enter the shapesL2-cloud directory.

• In AuthenticationAuthorizationManager/cert.properties set the address of the
symbIoTe core AAM (available through the coreInterface):

coreAAMAddress = https://symbiote-core.intracom-
telecom.com/coreInterface

Committing the changes

Inside the CloudConfigProperties directory execute the following commands:

rm -r .git

git init

git config user.email you@example.com

git config user.name "Your User Name"

git add .

git commit -m "Your platform’s name"

Create a Docker volume to hold settings stored in CloudConfigProperties folder

• Enter to the shapesL2-cloud directory.

https://symbiote-core.intracom-telecom.com/
https://symbiote-core.intracom-telecom.com/cloudCoreInterface
https://symbiote-core.intracom-telecom.com/cloudCoreInterface
https://symbiote-core.intracom-telecom.com/coreInterface
https://symbiote-core.intracom-telecom.com/coreInterface
mailto:you@example.com

 D4.2 SHAPES TP Development Tools and Capabilities Toolkit

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

27

• Replace the {docker stack name} in the next Docker command with your selected
Docker stack name (e.g., shapesL2_cloud).

• Inside the shapesL2-cloud directory execute the Docker volume command:

docker container run --rm -v $PWD/CloudConfigProperties:/source -v {docker stack
name} _symbiote-vol-config:/home/CloudConfigProperties -w /source alpine cp -r .
/home/CloudConfigProperties/

3.2.6.1.4 Configuring Docker compose files

Copy the following Docker compose files into the shapesL2-cloud directory (the
Docker compose files can be found at the GitHub repo):

docker-compose-swarm-L2.yml

docker-compose-prod-swarm-L2.yml

In case your deployment (symbIoTe Cloud L2 services) runs behind a proxy then the
docker-compose-swarm-L2.yml file must be configured to set the proxy settings. In
case of proxy existence uncomment the lines beginning with:

• JAVA_HTTP_PROXY

• JAVA_HTTPS_PROXY

• JAVA_NON_PROXY_HOSTS

Set the content of lines (the respective environmental variables for the proxy settings)
according to your proxy server setup.

3.2.6.1.5 Configuring NGINX micro-service

At the deployed symbIoTe Cloud L2 services docker stack, the NGINX microservice
will also run. The NGINX microservice is configured using the nginx.conf and nginx-
prod.conf files that are inside the shapesL2-cloud folder. The steps below need to be
followed:

• Remove nginx.conf, nginx-prod.conf and nginx-ngrok stored in the configu-
ration.zip file.

• Use nginx.conf and nginx-prod.conf files from provided documentation folder.

• Change the server_name setting in nginx.conf and nginx-prod.conf files: This
is the platform name provided during registration such as test-platform.

• Create fullchain.pem and privkey.pem certificate files as described in
https://github.com/symbIoTe-h2020/symbIoTeCloud/wiki/2.1-Configuration-of-
NGINX or by some other provider.

You can also use the certbot command to create a certificate manually with dns
validation:

certbot --manual certonly --preferred-challenges dns -d <domain name> --
email <admin email>

https://github.com/SHAPES-H2020/symbiotecloud/tree/master/resources/docker/docker-compose/L2
https://github.com/symbiote-h2020/SymbioteCloud/wiki/2.1-Configuration-of-NGINX
https://github.com/symbiote-h2020/SymbioteCloud/wiki/2.1-Configuration-of-NGINX

 D4.2 SHAPES TP Development Tools and Capabilities Toolkit

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

28

In that case you will be asked to deploy a DNS TXT record under a specific name.
After the creation of the certificates, letsencrypt informs the user about the location
of the new files.

This is the location where the files have to be copied from. The target location has
to be synchronized with the nginx configuration. Normally, it is the nginx-certificates
folder, which needs to be created as described next.

• In the shapesL2-cloud directory create the folder nginx-certificates, where
nginx is configured to find fullchain.pem and privkey.pem files, executing the
command:

mkdir nginx-certificates

Copy the created fullchain.pem and privkey.pem certificate files to nginx-
certificates folder (alternatively symbolic links can be used):

sudo cp /etc/letsencrypt/live/{your domain}/fullchain.pem nginx-
certificates/

sudo cp /etc/letsencrypt/live/{your domain}/privkey.pem nginx-certificates/

sudo chown -R {user}:{group} nginx-certificates

 D4.2 SHAPES TP Development Tools and Capabilities Toolkit

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

29

3.2.6.1.6 Running Docker stack of the symbIoTe L2 Cloud services

Before deploying the L2 Cloud Docker stack (shapesL2-cloud) verify that the file
structure under shapesL2-cloud folder is the same as shown in the next figure.

Figure 9- Structure of the deployment folder.

3.2.6.1.7 Running symbIoTe L2 Cloud services as a Docker stack

Follow the next steps to deploy symbIoTe Cloud L2 as a Docker stack.

• Enter to the shapesL2-cloud directory.

 D4.2 SHAPES TP Development Tools and Capabilities Toolkit

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

30

• Run docker swarm init if the node is not a swarm manager. We use the swarm

mode so that secrets are encrypted during transit and at rest. Docker secrets are
only available to swarm services and not to standalone containers.

• Run docker stack deploy -c docker-compose-swarm-L2.yml -c
docker-compose-prod-swarm-L2.yml {docker stack name}

{docker stack name} is the name of the service stack to be paused and is

assigned in the step described in 1.2.5 paragraph e.g. shapesL2-cloud.

• Now you can run docker stack ls to list the stack and check the number of

services used.

• After a few seconds run docker ps to check the list of micro services running in

the {docker stack name} stack.

• Run docker image ls to check that all images have been created. It may take a

while to pull all the images from Docker Hub for the first time. Docker service ls to
list the services and check their status. Wait until the actual number of tasks (rep-
licas) for each service is not 0.

• Run docker logs <container id> -f to get access to and follow the logs of a

service. A component is ready when a message similar to 'Started in 105.045 sec-
onds (JVM running for 112.933)' appears in the logs of the container.

• Run docker stack rm {docker stack name} to stop the application and remove

the service stack. Services, networks, and secrets associated with the stack will be
removed.

• You can run docker swarm leave --force to leave the swarm.

3.2.6.1.8 Creating the RAP plugin

Platform providers are required to implement the code needed to acquire resource
data from their IoT platform. The RAP plugin acts as a micro service, interfacing to the
RAP micro service (which is deployed in the L1/L2 symbIoTe Cloud) and the IoT
platform itself to enable L1- or L2-compliant access to resources data within IoT
platforms. Even though symbIoTe is entirely developed in Java, a standard
communication mechanism is provided to all symbIoTe components (e.g., https and
message queues) and therefore, the platform-specific RAP plugin is language
independent and does not need necessarily to be developed in Java. Instructions on
creating a RAP plugin can be found at the available online. Finally, notification
mechanism can be enabled by implementing the relevant interfaces. An example of
an application subscribing to a resource can be found at GitHub and relevant
instructions at the page.

https://github.com/SHAPES-H2020/symbioteRAPNoticationAppExample.git

 D4.2 SHAPES TP Development Tools and Capabilities Toolkit

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

31

3.3 FINoT IoT platform (FINT)

3.3.1 Generic Information

URL of GitHub Repository git@github.com:SHAPES-H2020/FINOT.git (provides the
FINoT API documentation)

URL of Container Registry NA (FINoT is a cloud base platform, containerized form is
not available

URL of Deployment yaml file NA (FINoT is deployed to FINT’s cloud, no yaml is
required)

3.3.2 Build and Deployment Procedure

Not applicable because FINoT is deployed and available via FINT’s cloud.

3.4 SHAPES Gateway (FINT)

The SHAPES gateway consists of FINT’s IoT gateway and the symbIoTe’s Smart
Space (SSP) middleware which enables the integration between smart objects (IoT
gateway, smart devices and IoT platforms) forming a local IoT environment (smart
space).

3.4.1 Generic Information

URL of
GitHub
Repository

git@github.com:SHAPES-H2020/Gateway.git

URL of
Container
Registry

N/A for IoΤ Gateway

https://hub.docker.com/repository/docker/shapes2020/smart_space_middle
ware, for SSP

URL of
Deploymen
t yaml file

N/A (deployment via shell command or bash script), for IoT Gateway

https://github.com/SHAPES-
H2020/symbioteSmartSpace/tree/master/resources, for SSP

mailto:git@github.com:SHAPES-H2020/FINOT.git
mailto:git@github.com:SHAPES-H2020/Gateway.git
https://hub.docker.com/repository/docker/shapes2020/smart_space_middleware
https://hub.docker.com/repository/docker/shapes2020/smart_space_middleware
https://github.com/SHAPES-H2020/symbioteSmartSpace/tree/master/resources
https://github.com/SHAPES-H2020/symbioteSmartSpace/tree/master/resources

 D4.2 SHAPES TP Development Tools and Capabilities Toolkit

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

32

3.4.2 Source Tree Information

The source tree information for symbIoTe’s Smart Space5 used as part of the SHAPES
gateway in the context of SHAPES project is the following:

• \src\main\java\eu\h2020\symbiote\ssp\innkeeper which include the code for
the Innkeeper component of the smart space that is responsible for the
registration of the smart devices, IoT gateways and platforms.

• \src\main\java\eu\h2020\symbiote\ssp\localaam which includes the code for
the Authorization Authentacation Manager (AAM) component of the smart
space.

• \src\main\java\eu\h2020\symbiote\ssp\rap which includes the code for the
Resource Access Proxy (RAP) component of the smart space that handles
the access to the resources registered to the SSP.

3.4.3 Tools and Project Dependencies

Tool Version Description

Docker Engine >= 20.10.11 The L3 symbi]ΙoΤe integration
middleware and the Shapes GW –
Smartplug API are provided in a
containerized form

Docker
18.03.x symbIoTe software is provided in

containerised form

Docker-compose
1.21.x symbIoTe software is provided in

containerised form

Docker-machine
0.14.x symbIoTe software is provided in

containerised form

MongoDB
3.6+ Containerised MongoDB database is used

by symbIoTe SSP middleware

3.4.4 Build and Deployment Procedure

3.4.4.1 Smart space middleware

This section describes the procedure to deploy symbIoTe’s smart space (SSP)
middleware as part of the SHAPES gateway in order to integrate smart objects (IoT
gateway, smart devices and IoT platforms) forming a local IoT environment (smart

5 https://github.com/SHAPES-H2020/symbiotesmartspace

https://github.com/SHAPES-H2020/symbiotesmartspace

 D4.2 SHAPES TP Development Tools and Capabilities Toolkit

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

33

space). The smart space middleware is based on the original symbIoTe software6
adjusted and dockerised for the purposes of the SHAPES project. The steps to deploy
the smart space middleware within the SHAPES project (also available at the wiki
page) are the following:

3.4.4.1.1 Register user and configure symbIoTe Smart Space

The first step is to create a service owner user who is an ASAPA user in the symbIoTe
Core Admin web page7. During registration, the following information needs to be
provided:

• username

• password

• email

• user role (Service Owner in this case)

Figure 10 - Registration of the smart space admin at symbIoTe's GUI.

Afterwards, the user can log in to the administration GUI and register their symbIoTe
Smart Space (SSP), by clicking on the SSP Details panel and then on Register New
SSP button on the upper right corner.

6 https://github.com/symbiote-h2020/SymbioteSmartSpace

7 https://symbiote-core.intracom-telecom.com/administration/

https://github.com/SHAPES-H2020/symbioteSmartSpace/wiki
https://github.com/symbiote-h2020/SymbioteSmartSpace
https://symbiote-core.intracom-telecom.com/administration/

 D4.2 SHAPES TP Development Tools and Capabilities Toolkit

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

34

Then, the following details need to be provided:

• Preferable SSP id.

• SSP Name.

• External Address: a valid https URL for the address where the SSP is availa-
ble from the Internet.

• Site Local Address: a valid https URL for the address where the SSP is avail-
able for clients residing in the same network.

• Choose if the site local address should be exposed.

Figure 11 – Symbiote Smart space registration.

In this step the symbIoTe Smart Space (SSP) is registered to the symbIoTe Core
services. The user can see the panel of the newly registered symbIoTe Smart Space
(SSP) and check its details by clicking on its header.

 D4.2 SHAPES TP Development Tools and Capabilities Toolkit

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

35

Figure 12 - Deletion of a smart space.

The registered SSP can be deleted by clicking the delete button on the bottom right
corner of the SSP details.

3.4.4.1.2 Installing prerequisites in the virtual machine.

In the virtual machine where the smart space is to be deployed the following needs to
be installed:

• Docker

• Docker-compose

The virtual machine running the Docker stack of symbIoTe’s Smart Space must
expose the HTTPS port 443 to internet with a public IP address. Also, the virtual
machine must have the ability to access the symbIoTe Core Services through port
443.

Create the folder and the necessary subfolders for your deployment.

In virtual machine create the SymbioteSmartSpace folder:

mkdir SymbioteSmartSpace

Inside the SymbioteSmartSpace folder create the SmartSpaceMiddleware folder and
copy the application.properties file.

Update the application.properties file with the correct configuration:

• Set to ssp.id the value assigned to SSP Id during the SSP registration phase

described in the previous step.

• Set to ssp.url the public IP URL of your virtual machine.

• Update the symbIoTe.core.interface.url, symbIoTe.cloud.interface.url and

symbIoTe.rap.cram.url with the correct symbIoTe Core Services URL.

https://github.com/SHAPES-H2020/symbioteSmartSpace/tree/master/resources

 D4.2 SHAPES TP Development Tools and Capabilities Toolkit

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

36

Inside the SymbioteSmartSpace folder create an AuthenticationAuthorizationManager
folder and copy the bootstrap.properties and cert.properties files.

Update the bootstrap.properties file with the correct configuration:

• Update the symbIoTe.core.interface.url with the correct symbIoTe Core Ser-

vices URL.

• Update the symbIoTe.interworking.interface.url with the public IP of your vir-

tual machine.

Update the cert.properties file with the correct configuration:

• Set to serviceId the value assigned to SSP Id during the SSP registration

phase (described in the previous step).

• Set to serviceOwnerUsername and serviceOwnerPassword the credentials of

the user registered through the administration web page to the symbIoTe

Core services.

• Update the coreAAMAddress with the URL of symbIoTe’s Core Services

AAM.

Obtaining the certificate files.

To secure communication of symbIoTe Smart Space, an SSL certificate is needed8 to
obtain the certificate files fullchain.pem and privkey.pem:

Inside the SymbioteSmartSpace working folder create the nginx-certificates folder.

Copy to the nginx-certificates folder the certificate files fullchain.pem and privkey.pem:

$ sudo cp /etc/letsencrypt/live/{your domain}/fullchain.pem nginx-
certificates/

$ sudo cp /etc/letsencrypt/live/{your domain}/privkey.pem nginx-
certificates/

Configuration of NGINX with HTTPS.

Nginx microservice is used for redirecting external requests to symbIoTe’s Smart
Space Docker microservices (such as, from IoT platforms, Smart Devices, symbIoTe-
enabled applications). Nginx needs to be configured so that it redirects correctly to the
appropriate microservice endpoints. Copy the Nginx configuration file nginx-prod.conf
inside SymbioteSmartSpace folder.

Configuration of docker compose files.

Inside the SymbioteSmartSpace folder, copy the docker-compose-prod-swarm-L3.yml
and docker-compose-swarm-L3.yml files.

In case the virtual machine runs behind a proxy, update the proxy settings according

to your proxy server. If no proxy is used, then comment the proxy settings parts

8 https://github.com/symbiote-h2020/SymbioteCloud/wiki/2.1-Configuration-of-NGINX#2111-obtaining-the-ssl-

certificate

https://github.com/SHAPES-H2020/symbioteSmartSpace/tree/master/resources
https://github.com/SHAPES-H2020/symbioteSmartSpace/tree/master/resources
https://github.com/symbiote-h2020/SymbioteCloud/wiki/2.1-Configuration-of-NGINX#2111-obtaining-the-ssl-certificate
https://github.com/symbiote-h2020/SymbioteCloud/wiki/2.1-Configuration-of-NGINX#2111-obtaining-the-ssl-certificate

 D4.2 SHAPES TP Development Tools and Capabilities Toolkit

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

37

(JAVA_HTTP_PROXY, JAVA_HTTPS_PROXY, JAVA_SOCKS_PROXY and

JAVA_NON_PROXY_HOSTS).

Run the docker stack.

To deploy the Symbiote Smart Space docker stack run:
• docker swarm init

• docker stack deploy -c docker-compose-swarm-L3.yml -c docker-compose-

prod-swarm-L3.yml nameOfYourStack

Note that you can select any preferable name for the stack to be deployed,
nameOfYourStack.

To check that the docker stack is up and running execute the following command:

docker ps that lists the services of the stack.

To remove the stack execute the following command:

docker stack rm nameOfYourStack.

To ensure the deployment is working the following URLs can be checked from the
browser:

• https://yourdomain/innkeeper/public_resources, where the correct response at the

beginning of the deployment is an empty json array [].

https://yourdomain/aam/get_available_aams, which returns the information about

all available AAMs in the system from the symbIoTe Core Services.

After successful deployment of the SSP the registration of the resources can be
followed (see wiki).

3.4.4.2 Gateway’s symbIoTe Client (L3-compliant GW)

This section describes the deployment of the symbIoTe client installed at FINT’s
gateway (GW) to enable its interconnection to the smart space middleware (L3-
compliance).

The following Dockerfile contains the configuration for building the Docker image of
the GW’s client.

FROM python:3

MAINTAINER Anargyros Sideris (FINT)

ARG srcdir=dist/finot_symbiote_main

RUN apt install bash

ENV appdir=/usr/src/app

ENV appname=gw-l3-rap-plugin

RUN mkdir -p $appdir/$appname

https://yourdomain/innkeeper/public_resources
https://yourdomain/aam/get_available_aams
https://github.com/SHAPES-H2020/symbioteSmartSpace

 D4.2 SHAPES TP Development Tools and Capabilities Toolkit

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

38

WORKDIR $appdir/$appname

COPY requirements.txt ./

RUN pip install --no-cache-dir -r requirements.txt

COPY l3mdw.py .

COPY modules modules

CMD ["/bin/bash", "-c", "ls -l"]

CMD ["python", "l3mdw.py"

The following are the contents of the middleware’s deployment bash script; it is
assumed that the Dockerfile is in the same directory with the deployment script. The
deployment script is to be executed logged in the GW as a shell command with root
privileges (e.g., bash deploy.sh).

#!/bin/bash

name=gw-l3-rap-plugin

cd ~/l3-mdw/

docker stop $name

docker rm $name

docker build -t $name .

docker run --network host --name $name -d $name

3.5 FHIR and eHealthPass Medical Interoperability (GNO)

3.5.1 Generic Information

URL of GitHub Repository https://github.com/SHAPES-H2020/FHIR_MQ/tree/master

URL of Container Registry N/A

URL of Deployment yaml file N/A

https://github.com/SHAPES-H2020/FHIR_MQ/tree/master

 D4.2 SHAPES TP Development Tools and Capabilities Toolkit

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

39

3.5.2 Source Tree Information

The FHIR MQ component is provided as a web service and is accessible by making
requests to the API, as described in the previous deliverable D4.3 “Integration Plan
and Test Cases”.

In GitHub, FHIR component is available as follows:

• FHIR: FHIR interoperability API by Gnomon.

• FHIR_MQ: Message queue for FHIR by Gnomon.

3.5.3 Build and Deployment Procedure

The FHIR MQ is offered as a web service. As such developers do not need to build
and deploy the service on their premises but can consume directly it using the API
described in the D4.3.

3.6 Data Lakehouse and Analytics Engine (TREE)

3.6.1 Generic Information

URL of
GitHub
Repository

https://github.com/orgs/SHAPES-H2020/repositories?q=Data
Lakehouse_&type=all&language=&sort=

Data lake integration: https://github.com/SHAPES-H2020/Data
Lakehouse_integration.git

API: https://github.com/SHAPES-H2020/Data Lakehouse_bigdata-api.git

Data Lakehouse_ DS environment: https://github.com/SHAPES-
H2020/Data Lakehouse_ds-env.git

Data Lakehouse_FHIR integrator: https://github.com/SHAPES-H2020/Data
Lakehouse_fhir-integrator.git

Data Lakehouse_symbiote conector: https://github.com/SHAPES-
H2020/Data Lakehouse_symbiote-connector.git

Data Lakehouse_ASAPA authenticator: https://github.com/SHAPES-
H2020/Data Lakehouse_asapa-authenticator.git

Terraform
Path

integrates the different projects, its documentation, and frameworks and

infrastructure https://github.com/SHAPES-H2020/Data
Lakehouse_integration/tree/main/infr

Data Analytics: https://github.com/SHAPES-H2020/Data
Lakehouse_ds-env/tree/main/infr

Internal API (entrance to TREE’s API): https://github.com/SHAPES-
H2020/Data Lakehouse_fhir-integrator/tree/main/api_2level

https://github.com/SHAPES-H2020/FHIR
https://github.com/SHAPES-H2020/FHIR_MQ
https://github.com/orgs/SHAPES-H2020/repositories?q=DataLake_&type=all&language=&sort=
https://github.com/orgs/SHAPES-H2020/repositories?q=DataLake_&type=all&language=&sort=
https://github.com/SHAPES-H2020/DataLake_integration.git
https://github.com/SHAPES-H2020/DataLake_integration.git
https://github.com/SHAPES-H2020/DataLake_bigdata-api.git
https://github.com/SHAPES-H2020/DataLake_ds-env.git
https://github.com/SHAPES-H2020/DataLake_ds-env.git
https://github.com/SHAPES-H2020/DataLake_fhir-integrator.git
https://github.com/SHAPES-H2020/DataLake_fhir-integrator.git
https://github.com/SHAPES-H2020/DataLake_symbiote-connector.git
https://github.com/SHAPES-H2020/DataLake_symbiote-connector.git
https://github.com/SHAPES-H2020/DataLake_asapa-authenticator.git
https://github.com/SHAPES-H2020/DataLake_asapa-authenticator.git
https://github.com/SHAPES-H2020/DataLake_integration/tree/main/infr
https://github.com/SHAPES-H2020/DataLake_integration/tree/main/infr
https://github.com/SHAPES-H2020/DataLake_ds-env/tree/main/infr
https://github.com/SHAPES-H2020/DataLake_ds-env/tree/main/infr
https://github.com/SHAPES-H2020/DataLake_fhir-integrator/tree/main/api_2level
https://github.com/SHAPES-H2020/DataLake_fhir-integrator/tree/main/api_2level

 D4.2 SHAPES TP Development Tools and Capabilities Toolkit

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

40

Integration with FHIR: https://github.com/SHAPES-H2020/Data
Lakehouse_fhir-integrator/tree/main/api_1level

3.6.2 Source Tree Information

• Data Lakehouse_integration: “integration” project: integrates the different
projects, its documentation, and frameworks and infrastructure.

• Data Lakehouse: “data-lakehouse” project: core component that defines and
orchestrates the data workflows.

• Data Lakehouse_ds-env: “ds-environment” project: infrastructure
configuration modules for a data scientist team environment.

• Data Lakehouse_asapa-authenticator “asapa-authenticator” project: Data
Lakehouse ASAPA integrated authenticator.

• Data Lakehouse_bigdata-api “bigdata-api” project: outbound data and control
interfaces.

• Data Lakehouse_symbiote-connector: “symbiote-connector” project: Symbiote
– Inbound API integration project.

• Data Lakehouse_fhir-integrator: “fhir-integrator” project: Phir – Inbound API
integration project.

• Data Lakehouse_fhir-integrator: “fhir-integrator” project: Phir – Inbound API
integration project.

3.6.3 Tools and Project Dependencies

The list of tools to be deployed is still under investigation; however a preliminary list of
the tools to be used are:

Tool
Version Description

AWS Under development

Terraform Under development

Docker/K8s Under development

3.7 SHAPES Front-end Application (EDGE)

3.7.1 Generic Information

URL of GitHub Repository https://github.com/SHAPES-H2020/Front-end-App

URL of Container Registry N/A

https://github.com/SHAPES-H2020/DataLake_fhir-integrator/tree/main/api_1level
https://github.com/SHAPES-H2020/DataLake_fhir-integrator/tree/main/api_1level
https://github.com/SHAPES-H2020/DataLake_integration
https://github.com/SHAPES-H2020/DataLake
https://github.com/SHAPES-H2020/DataLake_ds-env
https://github.com/SHAPES-H2020/DataLake_asapa-authenticator
https://github.com/SHAPES-H2020/DataLake_bigdata-api
https://github.com/SHAPES-H2020/DataLake_symbiote-connector
https://github.com/SHAPES-H2020/DataLake_fhir-integrator
https://github.com/SHAPES-H2020/DataLake_fhir-integrator
https://github.com/SHAPES-H2020/Front-end-App

 D4.2 SHAPES TP Development Tools and Capabilities Toolkit

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

41

URL of Deployment yaml file. N/A

SHAPES Front-end Application (FA) is a new SHAPES development, proposed by
EDGENEERING, with the clear purpose of facilitating the users’ interaction with the
different SHAPES Digital Solutions, namely those running on Apps either on
smartphones or tablets (devices).

The SHAPES Front-end App uses Android Intent to start other installed Apps. When
an intent is launched, it sends authentication data using Bundles.

The SHAPES Front-end App is integrated with the ASAPA (SHAPES Authentication
mechanism) and several SHAPES digital solutions.

3.7.2 Source Tree Information

The FA source-code follows a structure common in Android Studio projects
(https://developer.android.com/studio). As documented in Android Studio’s project
overview (https://developer.android.com/studio/projects) as follows.

Within each Android app module, files are shown in the following groups:

• manifests: Contains the AndroidManifest.xml file.

• Java: Contains the Java source code files, separated by package names,
including JUnit test code.

• res: Contains all non-code resources, such as XML layouts, UI strings,
and bitmap images, divided into corresponding sub-directories.

Within each module name, the following directories are used:

• build/ Contains build outputs.

• libs/ Contains private libraries.

• src/ Contains all code and resource files for the module

Project and module specific build configurations are defined in build.gradle files.

3.7.3 Tools and Project Dependencies

Tool Version Description

AndroidStudio 4.1 or above https://developer.android.com/studio

Gradle 7.0.3 or above Build automation tool for software
development. Used for compilation,
testing, deployment, and publishing.

Android version / API Android 6.0 or above /
API Level 23 or above

Android operating system and runtime
system.

Android SDK Build
Tools

31 or above Software development kit including a
debugger, libraries and an android
device emulator.

https://developer.android.com/studio
https://developer.android.com/studio/projects
https://developer.android.com/studio

 D4.2 SHAPES TP Development Tools and Capabilities Toolkit

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

42

Git tools 2.25 or above Tool for downloading FA from the
SHAPES repository.

3.7.4 Build and Deployment Procedure

• git clone https://github.com/SHAPES-H2020/Front-end-App

• cd /Front-end-App

• ./gradlew assemble (in unix-based command line)

3.8 Marketplace (HMU)

3.8.1 Generic Information

URL of GitHub Repository https://github.com/SHAPES-H2020/Marketplace

URL of Container Registry https://hub.docker.com/r/shapes2020/marketplace-backend

https://hub.docker.com/r/shapes2020/marketplace-frontend

URL of Deployment yaml
file

https://github.com/SHAPES-
H2020/Marketplace/blob/main/docker-compose.yaml

3.8.2 Tools and Project Dependencies

Tool Version Description

Docker-compose 3.9 Needed for deploying Marketplace Docker image

Docker-ce stable -

git protocol 2.35.1 Needed for downloading the Marketplace

3.8.3 Build and Deployment Procedure

In order to deploy the Marketplace, there are two main components to be deployed,
the Front-end and the Back-end. Both components are compiled and deployed by
utilizing the Docker-compose functionalities.

• Git clone https://github.com/SHAPES-H2020/Marketplace

• Cd Marketplace

• Docker-compose up -d

https://github.com/SHAPES-H2020/Front-end-App
https://github.com/SHAPES-H2020/Marketplace
https://hub.docker.com/r/shapes2020/marketplace-backend
https://hub.docker.com/r/shapes2020/marketplace-frontend
https://github.com/SHAPES-H2020/Marketplace/blob/main/docker-compose.yaml
https://github.com/SHAPES-H2020/Marketplace/blob/main/docker-compose.yaml
https://github.com/SHAPES-H2020/Marketplace

 D4.2 SHAPES TP Development Tools and Capabilities Toolkit

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

43

3.9 Human Interaction and Visual Mapping (VICOM)

3.9.1 Generic Information

URL of GitHub Repository https://github.com/SHAPES-H2020/VICOM

As the modules listed above, rather than being provided as a software with integration
capabilities, are provided as standalone/pluggable solutions that can be employed to
enrich the SHAPES ecosystem of DS.

3.9.2 Source Tree Information

The previously defined repository contains the information of the Human Interaction
and Visual Mapping components of SHAPES. The main tools provided in this section
are:

• Adilib and the Adilib-Skills
o Reminders
o Tutorials
o Questionnaires
o Agenda

• Emotion detection

• Oroface

• Facocog

The GitHub repository is under development and the following information will be
ultimately added:

• URLs of the current deployments

• User Manuals and Documentation

• Demonstrators (if applicable)

• URLs / Documentations of the intercommunication APIs (if applicable)

• Other relevant information for the acquisition of these solutions

3.9.3 Tools and Project Dependencies

Not applicable OR to be provided in D4.6

3.9.4 Build and Deployment Procedure

To be provided in D4.6.

https://github.com/SHAPES-H2020/VICOM

 D4.2 SHAPES TP Development Tools and Capabilities Toolkit

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

44

4 Communication Diagrams
This section describes the communication diagrams between the SHAPES core
components regarding main functionalities of the SHAPES TP, as well as the
exchange of messages required between SHAPES core components and digital
solutions to be able to interact within the SHAPES ecosystem.

4.1 User Initialisation Workflow

This section describes the communication diagram for a DS to integrate their user
registration procedure with the SHAPES authentication mechanism provided by the
ASAPA component in order provide secure and authorised access to users. A user,
DS or client application that wants to interact with the SHAPES ecosystem needs to
register to the ASAPA component in order to be able to login to the SHAPES
ecosystem and authenticate themselves. The authentication token is then needed to
be presented for accessing and using any SHAPES service. The detailed user
initialisation workflow is described in the figure below.

Figure 13 --User initialization workflow.

• In case the DS provides classified services (services that require different au-
thorization rights), an initial configuration is required to be followed by the DS
before any user access to the system so that the required roles for their author-
ization mechanism are created. A request to the following ASAPA endpoint can
be made by the DS to create the different groups/roles/permissions: POST
/shapes/asapa/realms/{realm_id}/organiza-
tions/{org_id}/groups/{group_id}/roles/{role_id}/permissions.

 D4.2 SHAPES TP Development Tools and Capabilities Toolkit

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

45

• A user registered to ASAPA can be considered as a guest user giving the min-
imum set of user privileges and rights for a DS. A guest user can be created
by utilising the following ASAPA endpoint: POST shapes/asapa/auth/register.

• After the successful registration of the user, the DS can authenticate a user
using the login endpoint of the ASAPA component in order to receive a valid
token which can then be used for authorization purposes: POST
/shapes/asapa/auth/login.

• To validate the user token, the /shapes/asapa/users/me endpoint can be used.

Alternatively, the GET /shapes/asapa/auth/token/verify ASAPA endpoint can be

used to verify the validity of a token, but it does not return the user authorisation
information as the aforementioned endpoint.

• If a user accesses a classified service of a DS, then additional information is
needed. In order to collect this information the DS needs to provide a special
endpoint for the first time in order to collect the additional user profiling infor-
mation or user role required. This endpoint after the collection of these data
communicates with the ASAPA component to add the user info obtained by
making the following POST request: shapes/asapa/realms/{realm_id}/organiza-
tions/{org_id}/groups/{group_id}/roles/{role_id}/users/{user_id}.

• In case of the classified service and the need of a privileged user, user’s au-
thorisation information can be received by making a GET request to the follow-
ing ASAPA endpoint: shapes/asapa/realms/{realm_id}/organiza-
tions/{org_id}/groups/{group_id}/roles/{role_id}/users/{user_id}, which requires a

valid token of the user to be provided.

• The token of a user is valid for a configurable time period. The validity period of
the token is obtained in the response of the login endpoint. During this validity
period the client could refresh the token as many times as they like utilising the
POST /shapes/asapa/auth/token/refresh endpoint. The token can also be veri-

fied using the GET /shapes/asapa/auth/token/verify endpoint. If the token is not

valid, the user will need to login again providing the user credentials.

The endpoints are described in details in the respective swagger documentation avail-
able at GitHub.

4.2 IoT data interoperability workflows

This section describes the main communication diagrams to interoperate, share and
access IoT data within the SHAPES ecosystem, utilising the symbIoTeAPI service of
the symbIoTe component, developed for the SHAPES purposes. The respective
symbIoTeAPI endpoints are described in detail in the swagger documentation
available at GitHub.

4.2.1 User registration to symbIoTe
A guest user, in order to access symbIoTe services for searching IoT devices and
accessing their data, firstly needs to login to ASAPA to receive an authentication token

https://github.com/SHAPES-H2020/ASAPA/blob/main/ASAPA_swagger_documentation.yaml
https://github.com/SHAPES-H2020/symbioteAPI/blob/main/symbIoTeAPI-swagger_v2.yaml

 D4.2 SHAPES TP Development Tools and Capabilities Toolkit

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

46

and then, register to symbIoTe core services by making a POST request to the
following symbIoTeAPI’s endpoint: /symbIoTe/admin/registerUser/me/toSymbIoTe.

A PAAM user for a symbIoTe-enabled DS that needs to register the DS’s IoT
resources needs to register to symbIoTe, using the following symbIoTeAPI’s endpoint:
/symbIoTe/admin/registerpaam.

Figure 14 - User registration to symbIoTe.

Note that a PAAM user is a user registered as a platform owner and has privileged rights
compared to a simple symbIoTe user.

4.2.2 Registration of IoT Resources
A PAAM user of a symbIoTe-enabled DS can register its platform’s resources to
symbIoTe’s core services so that they can be exposed to other DSs for L1-compliance,
using the following symbIoTe’s API endpoint: POST /symbIoTe/resource/register/L1Res.
The PAAM user firstly needs to log successfully to the ASAPA component.

Finally, the PAAM user can share the registered resource to a joined federation in
order to expose its IoT resource to the federated platforms (or symbIoTe-enabled DSs)
and achieve L2-compliance.

 D4.2 SHAPES TP Development Tools and Capabilities Toolkit

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

47

Figure 15 – Registration of IoT resources to symbIoTe.

4.2.3 Search for IoT Resources
Resource metadata of symbIoTe Core (L1-compliant)-registered resources can be
discovered though a POST request to the following symbIoTeAPI endpoint:
/symbIoTe/resource/get/ListOfL1. In the request made, the application client (or DS) can

define the search criteria to find the resources it needs, after logging to the ASAPA
component. Finally, the resource metadata for a specific resource can be obtained
through a POST request to the /symbIoTe/resource/get/ListOfL1 symbIoTeAPI endpoint.

The procedure described is depicted in the figure below.

Figure 16 – Search L1 resource.

 D4.2 SHAPES TP Development Tools and Capabilities Toolkit

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

48

The workflow is similar for the case of federated resources (L2 compliance), utilising
the respective L2 symbIoTeAPI endpoints, which query the symbIoTe Cloud services
of the symbIoTe-enabled DS, as shown in the figure below.

Figure 17 – Search L2 resource.

4.2.4 Access to IoT Resources
The procedure to access a resource registered to symbIoTe core (L1 compliant) and
obtain the resource’s observations is described in the figure below. An application
client (or DS) that wants to access the resource makes a POST request to the
/symbIoTe/resource/access/ symbIoTeAPI endpoint, after logging to the ASAPA

component. The symbIoTeAPI forwards the request to the Resource Access Proxy
(RAP) service of the symbIoTe Cloud deployed by the DS/IoT platform (e.g. FINoT
platform) in order to access the resource and get the observation data. The RAP
service forwards the request to the platform specific RAP plugin (the connector of
symbIoTe with the IoT platform/DS developed by the platform owner) to make any
adaptations required, regarding the data format and acquire the data of the platform’s
resource. Then, the RAP plugin forwards them to the generic part of the RAP which
then handles all communication with the upper layers to send the observation data to
the client. The resource metadata (resource ID) required for the request made can be
obtained, if not known, using the searchL1Resource procedure, explained in the
previous section.

 D4.2 SHAPES TP Development Tools and Capabilities Toolkit

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

49

Figure 18 – Access L1 resources.

The procedure is similar for the case of federated resources (L2 compliance) utilising
the corresponding L2 symbIoTeAPI components to reach the symbIoTe cloud services
of the respective IoT platform (or DS) and obtain the resource observations as
presented in the following figure.

 Figure 19 - Access L2 resource.

Finally, symbIoTe’s mechanism for handling resource subscriptions can be utilised by
a DS that wants to support resource subscriptions through the use of web sockets.

Any application client that acts as a subscriber, such as the data Lakehouse, or a DS
needs to handle the web socket management in order to create the required web
socket sessions and monitor their status as shown in the figure below. The application

 D4.2 SHAPES TP Development Tools and Capabilities Toolkit

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

50

client sends a subscriber request to the DS that provides the resource (acting as the
publisher) and starts receiving the resource observations. Finally, the subscriber
needs to listen to the keep alive message sent by the publisher to keep the session
alive. An unsubscribe request to the DS that is acting as publisher, notifies it that the
subscriber does not want to receive data anymore and the session is closed. Finally,
optional steps can be utilised, in case the application client (subscriber) is the Data
Lakehouse component. The Data Lakehouse component may implement a
NotifyForData endpoint in order to be informed by a DS to subscribe to its resource
for starting receiving observations, while a NotifyForUnsubscription endpoint can be
implemented to receive notifications to stop its subscription to the resource, when the
DS does not want to send it data anymore.

Figure 20 – Subscription to a resource.

4.2.5 Registration and access to SHAPES Gateway

This section describes the workflows for the connection to the Smart Space (SSP).
The SSP is part of the SHAPES Gateway component and enables the connection
between IoT platforms, IoT gateways and smart devices within a local environment to
communicate and be accessible through symbIoTe.

In order for n IoT platform or an IoT gateway to be registered to the SSP through the
SSP gateway, it needs to send a request to the Inkeeper subcomponent of the SSP in
order to register and receive its unique identifiers, namely the symId and sspId.
Resources (devices) are connected to the gateway to broadcast their data. The IoT
gateway or IoT platform registers its resource(s), by sending a join request to the SSP

 D4.2 SHAPES TP Development Tools and Capabilities Toolkit

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

51

RAP, a subcomponent of the SSP and receive the unique identifier for each registered
resource. After the successful registration of the resources, the same procedure
described in earlier sections for searching and accessing an L1 resource, can be
followed to search and access the resources registered to the SSP, by an IoT
gateway/IoT platform from outside the SSP. The aforementioned procedure is also
used for the connection of FINT’s IoT gateway to symbIoTe’s smart space, which
comprise the SHAPES gateway.

Finally, symbIoTe L3, also, allows a smart device (a device where symbIoTe software
can be installed) directly to the SSP. The procedure is similar to the case of an IoT
platform or IoT gateway registering to the SSP with the device endpoints now being
used (/innkeeper/sdev instead of /innkeeper/platform at the figure below).

Figure 21: Registration to SSP and access to resources (L3).

The following figure describes the workflow where the FINoT platform is used for
storing resource data of DSs that do not have storage for keeping and sharing
historical data. The differentiation from the previous diagram is that the SHAPES
gateway (FINT IoT Gateway connected to the SSP) now sends the data of the
resources to the FINoT platform to store them. When a request for obtaining historical
data is made, the SHAPES gateway forwards the request to the FINoT platform to
acquire the data stored.

 D4.2 SHAPES TP Development Tools and Capabilities Toolkit

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

52

Figure 22: Storing of IoT data to FINOT platform.

4.3 Exchange of FHIR data

The diagram below describes the communication required for exchanging FHIR
messages through the use of the FHIR message broker. Any Digital Solution (DS) that
wants to send or receive FHIR messages needs to be a SHAPES user registered to
ASAPA. Therefore, a DS that wants to send FHIR data through the FHIR component
firstly needs to login to the ASAPA component and obtain a valid token. Then, the DS
needs to register to the FHIR MQ by providing the ASAPA token. The FHIR MQ
validates the token and confirms the registration. Subsequently, the DS can create a
new topic and send a message.

Likewise, any DS that wants to obtain data specific to a topic, needs to login to ASAPA,
obtain a valid token and register to FHIR MQ using the token. After that, the DS can
request the list of the data providers and the available topics in order to choose the
ones they are interested in subscribing to. In order to subscribe to a topic, the DS
needs to provide the endpoint to which the FHIR MQ will forward the messages. A
DS can, also, stop receiving messages by deleting the respective subscription.

 D4.2 SHAPES TP Development Tools and Capabilities Toolkit

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

53

Figure 23: FHIR Workflow.

 D4.2 SHAPES TP Development Tools and Capabilities Toolkit

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

54

4.4 Data Lakehouse Workflow

Figure 24 provides a general overview of the next represented workflows, regarding
the interaction workflow of the Data Lakehouse. The platform allows data ingestion,
execution and transformation of the analysis deployed in the platform and data query.
Although these processes are represented in a sequential mode for better visualization
and understanding, these phases are done in parallel.

The involved agents are: the Digital Solution- DS (ds1: DS) that ingest the data, the
DataLake, the DS that consume the data (ds2:DS) and the Analytics Controller, that
is responsible for launching the analysis.

Figure 24 – Data Lakehouse Workflow.

4.4.1 Data Ingestion Workflow

We have two data types: IoT data (sent by DS1a) and non-IoT data (sent by DS1b).
Within the IoT data scheme, the DS sends data through symbIoTe (Section 4.4.1.1).
Regarding non-IoT data, more information can be seen in Section 4.4.1.2.

 D4.2 SHAPES TP Development Tools and Capabilities Toolkit

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

55

Figure 25 – Data Ingestion Workflow.

4.4.1.1 IoT Data Ingestion Workflow

Figure 26 – Data Ingestion for IoT data

4.4.1.2 Non-IoT Data Ingestion Workflow

Figure 27 – Data Ingestion for non-IoT data.

 D4.2 SHAPES TP Development Tools and Capabilities Toolkit

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

56

4.4.2 Data Processing Execution

In this schema, the “Analytics Controller” is responsible for requesting the execution
of the processing. The “Message Broker” is the communication mechanism between
the “Analytics Controller” and the Data Lakehouse, which executes the processing. It
is the message queue the DS2 listens to when an analysis finishes.

The process is: the Analytics Controller publishes an analysis execution request,
through the message broker; the Data Lakehouse is listening to the message broker
(message queue) and once the execution request is received, it then performs the
analysis. Once the execution finishes it also publishes a message information that the
results are available. The DS2 that listens to it receives that information.

Figure 28 – Data Processing

4.4.3 Data Query

To consult the data, first the ASAPA login needs to be executed (Section 4.1). Once
the DS (DS2) has the ASAPA token, it invokes the operation query from the Data
Lakehouse. If the token is valid, the Data Lakehouse validates if the user has access
to these data (permissions) and executes the query to return the result. Otherwise, it
informs the DS with the respective error (e.g., invalid token or unauthorised access).

 D4.2 SHAPES TP Development Tools and Capabilities Toolkit

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

57

Figure 29 – Data Query.

 D4.2 SHAPES TP Development Tools and Capabilities Toolkit

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

58

4 Results and Conclusions
This deliverable details the source-code and libraries, produced as a result of the
following WP4 tasks:

• Task 4.3 “Implementation of Mediation Framework & Interoperability Services”

• Task 4.4 “Implementation & Deployment of Secure Cloud & Big Data Platform”

• Task 4.5 “Human Interaction & Visual Mapping”

• Task 4.6 “SHAPES Authentication, Security & Privacy Assurance”

• Task 4.7 “SHAPES Gateway Reference Implementation”

• Task 4.8 “Integration and Testing of SHAPES TP”

This report provides the structure of the developed component’s software, the build
and deployment requirements, the functionalities of the individual components and
dependencies specific to them. Finally, the flow of information between the SHAPES
core components and interaction with them is also described, in the form of sequence
diagrams. These sequence diagrams describe the complete workflow cycle for the
interaction of the user or Digital Solution within the SHAPES ecosystem.

 D4.2 SHAPES TP Development Tools and Capabilities Toolkit

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

59

5 Ethical Requirements Check
The focus of this compliance check is on the ethical requirements defined in D8.4 and
having impact on the SHAPES solution (technology and related digital services, user
processes and support, governance-, business- and ecosystem models).

Ethical issue (corresponding subsection
of D8.4 in brackets) 

How it has been taken into account in
this deliverable (if relevant) 

Fundamental Rights (3.1) Not applicable

Biomedical Ethics and Ethics of Care (3.2) Not applicable

CRPD and supported decision-making (3.3) Not applicable

Capabilities approach (3.4) Not applicable

Sustainable Development and CSR (4.1) Not applicable

Customer logic approach (4.2) Not applicable

Artificial intelligence (4.3) Not applicable

Digital transformation (4.4) Not applicable

Privacy and data protection (5) Not applicable

Cyber security and resilience (6) Not applicable

Digital inclusion (7.1) Not applicable

The moral division of labour (7.2) Not applicable

Care givers and welfare technology (7.3) Not applicable

Movement of caregivers across Europe (7.4) Not applicable

NOTE: based on the fact that this deliverable outlines only software support to using
the SHAPES Technological Platform by 3rd-parties and thus containing ONLY public
information, excluding any references to proprietary project data and any identifiable
private information (excluding names of authors and contributors) none of the above
Ethical issues applies.

 D4.2 SHAPES TP Development Tools and Capabilities Toolkit

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857159.

60

6 References
Only links to EC-reviewed deliverables published on SHAPES portal are provided.

[1] SHAPES Consortium (2020).

D4.1 – SHAPES TP Requirements and Architecture – MAY-2021.

[2] SHAPES Consortium (2020).

D5.3 – SHAPES Digital Solutions V2 – OCT-2021.

D5.1 - SHAPES Digital Solutions V1 – AUG-2022.

[3] SHAPES Consortium (2020).

D4.3 – Integration Plan and Test Cases – OCT-2021

[4] SHAPES Consortium (2020).

D4.6 – SHAPES Interoperability Reference Testing Environment – OCT-2021

https://shapes2020.eu/wp-content/uploads/2022/01/SHAPES-D4.1-SHAPES-TP-Requirements-and-Architecture-v1.3.pdf
https://shapes2020.eu/wp-content/uploads/2020/11/D5.1-SHAPES-User-Experience-and-Guidelines.pdf

